Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Adv ; 7(46): eabe5469, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34767445

ABSTRACT

Programmed cell death is regulated by the balance between activating and inhibitory signals. Here, we have identified RECS1 (responsive to centrifugal force and shear stress 1) [also known as TMBIM1 (transmembrane BAX inhibitor motif containing 1)] as a proapoptotic member of the TMBIM family. In contrast to other proteins of the TMBIM family, RECS1 expression induces cell death through the canonical mitochondrial apoptosis pathway. Unbiased screening indicated that RECS1 sensitizes cells to lysosomal perturbations. RECS1 localizes to lysosomes, where it regulates their acidification and calcium content, triggering lysosomal membrane permeabilization. Structural modeling and electrophysiological studies indicated that RECS1 is a pH-regulated calcium channel, an activity that is essential to trigger cell death. RECS1 also sensitizes whole animals to stress in vivo in Drosophila melanogaster and zebrafish models. Our results unveil an unanticipated function for RECS1 as a proapoptotic component of the TMBIM family that ignites cell death programs at lysosomes.

2.
PLoS One ; 16(7): e0254834, 2021.
Article in English | MEDLINE | ID: mdl-34324551

ABSTRACT

Accumulation of misfolded proteins in the brain is a common hallmark of most age-related neurodegenerative diseases. Previous studies from our group identified the presence of anti-inflammatory and antioxidant compounds in leaves derived from the Chilean berry Ugni molinae (murtilla), in addition to show a potent anti-aggregation activity in models of Alzheimer´s disease. However, possible beneficial effects of berry extracts of murtilla was not investigated. Here we evaluated the efficacy of fruit extracts from different genotypes of Chilean-native U. molinae on reducing protein aggregation using cellular models of Huntington´s disease and assess the correlation with their chemical composition. Berry extraction was performed by exhaustive maceration with increasing-polarity solvents. An unbiased automatic microscopy platform was used for cytotoxicity and protein aggregation studies in HEK293 cells using polyglutamine-EGFP fusion proteins, followed by secondary validation using biochemical assays. Phenolic-rich extracts from murtilla berries of the 19-1 genotype (ETE 19-1) significantly reduced polyglutamine peptide aggregation levels, correlating with the modulation in the expression levels of autophagy-related proteins. Using LC-MS and molecular network analysis we correlated the presence of flavonoids, phenolic acids, and ellagitannins with the protective effects of ETE 19-1 effects on protein aggregation. Overall, our results indicate the presence of bioactive components in ethanolic extracts from U. molinae berries that reduce the load of protein aggregates in living cells.


Subject(s)
Fruit , Huntington Disease , Protein Aggregates , Antioxidants/pharmacology , HEK293 Cells , Humans , Myrtaceae/chemistry , Plant Extracts/pharmacology , Plant Leaves
3.
Trends Cell Biol ; 30(11): 881-891, 2020 11.
Article in English | MEDLINE | ID: mdl-33036871

ABSTRACT

Sustaining both proteome and genome integrity (GI) requires the integration of a wide range of mechanisms and signaling pathways. These comprise, in particular, the unfolded protein response (UPR) and the DNA damage response (DDR). These adaptive mechanisms take place respectively in the endoplasmic reticulum (ER) and in the nucleus. UPR and DDR alterations are associated with aging and with pathologies such as degenerative diseases, metabolic and inflammatory disorders, and cancer. We discuss the emerging signaling crosstalk between UPR stress sensors and the DDR, as well as their involvement in cancer biology.


Subject(s)
DNA Damage , Endoplasmic Reticulum/metabolism , Proteostasis , Animals , DNA Damage/genetics , Genomic Instability , Humans , Models, Biological , Proteostasis/genetics , Signal Transduction
4.
Nat Commun ; 11(1): 2401, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32409639

ABSTRACT

The molecular connections between homeostatic systems that maintain both genome integrity and proteostasis are poorly understood. Here we identify the selective activation of the unfolded protein response transducer IRE1α under genotoxic stress to modulate repair programs and sustain cell survival. DNA damage engages IRE1α signaling in the absence of an endoplasmic reticulum (ER) stress signature, leading to the exclusive activation of regulated IRE1α-dependent decay (RIDD) without activating its canonical output mediated by the transcription factor XBP1. IRE1α endoribonuclease activity controls the stability of mRNAs involved in the DNA damage response, impacting DNA repair, cell cycle arrest and apoptosis. The activation of the c-Abl kinase by DNA damage triggers the oligomerization of IRE1α to catalyze RIDD. The protective role of IRE1α under genotoxic stress is conserved in fly and mouse. Altogether, our results uncover an important intersection between the molecular pathways that sustain genome stability and proteostasis.


Subject(s)
Cell Survival/genetics , DNA Repair , Drosophila Proteins/metabolism , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/metabolism , RNA Stability/genetics , Animals , DNA Damage , Drosophila Proteins/genetics , Drosophila melanogaster , Endoribonucleases/genetics , Female , Fibroblasts , Genomic Instability , HEK293 Cells , Humans , Mice , Mice, Knockout , Protein Multimerization , Protein Serine-Threonine Kinases/genetics , Proteostasis/genetics , Proto-Oncogene Proteins c-abl/metabolism , RNA, Messenger/metabolism
5.
Biochim Biophys Acta Mol Cell Res ; 1867(8): 118716, 2020 08.
Article in English | MEDLINE | ID: mdl-32275931

ABSTRACT

RNA editing has emerged as a novel mechanism in cancer progression. The double stranded RNA-specific adenosine deaminase (ADAR) modifies the expression of an important proportion of genes involved in cell cycle control, DNA damage response (DDR) and transcriptional processing, suggesting an important role of ADAR in transcriptome regulation. Despite the phenotypic implications of ADAR deregulation in several cancer models, the role of ADAR on DDR and proliferation in breast cancer has not been fully addressed. Here, we show that ADAR expression correlates significantly with clinical outcomes and DDR, cell cycle and proliferation mRNAs of previously reported edited transcripts in breast cancer patients. ADAR's knock-down in a breast cancer cell line produces stability changes of mRNAs involved in DDR and DNA replication. Breast cancer cells with reduced levels of ADAR show a decreased viability and an increase in apoptosis, displaying a significant decrease of their DDR activation, compared to control cells. These results suggest that ADAR plays an important role in breast cancer progression through the regulation of mRNA stability and expression of those genes involved in proliferation and DDR impacting the viability of breast cancer cells.


Subject(s)
Adenosine Deaminase/metabolism , Breast Neoplasms/metabolism , Cell Cycle/physiology , DNA Damage/physiology , RNA Editing , RNA-Binding Proteins/metabolism , Transcriptome , Adenosine Deaminase/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Disease Progression , Female , Humans , MCF-7 Cells , RNA Stability , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics
6.
Cancers (Basel) ; 12(4)2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32218280

ABSTRACT

Gallbladder cancer is an aggressive disease with late diagnosis and no efficacious treatment. The Hippo-Yes-associated protein 1 (YAP1) signaling pathway has emerged as a target for the development of new therapeutic interventions in cancers. However, the role of the Hippo-targeted therapy has not been addressed in advanced gallbladder cancer (GBC). This study aimed to evaluate the expression of the major Hippo pathway components mammalian Ste20-like protein kinase 1 (MST1), YAP1 and transcriptional coactivator with PDZ-binding motif (TAZ) and examined the effects of Verteporfin (VP), a small molecular inhibitor of YAP1-TEA domain transcription factor (TEAD) protein interaction, in metastatic GBC cell lines and patient-derived organoids (PDOs). Immunohistochemical analysis revealed that advanced GBC patients had high nuclear expression of YAP1. High nuclear expression of YAP1 was associated with poor survival in GBC patients with subserosal invasion (pT2). Additionally, advanced GBC cases showed reduced expression of MST1 compared to chronic cholecystitis. Both VP treatment and YAP1 siRNA inhibited the migration ability in GBC cell lines. Interestingly, gemcitabine resistant PDOs with high nuclear expression of YAP1 were sensitive to VP treatment. Taken together, our results suggest that key components of the Hippo-YAP1 signaling pathway are dysregulated in advanced gallbladder cancer and reveal that the inhibition YAP1 may be a candidate for targeted therapy.

7.
J Mol Biol ; 432(10): 3222-3238, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32198114

ABSTRACT

Several mechanisms directing a rapid transcriptional reactivation of genes immediately after mitosis have been described. However, little is known about the maintenance of repressive signals during mitosis. In this work, we address the role of Ski in the repression of gene expression during M/G1 transition in mouse embryonic fibroblasts (MEFs). We found that Ski localises as a distinct pair of dots at the pericentromeric region of mitotic chromosomes, and the absence of the protein is related to high acetylation and low tri-methylation of H3K9 in pericentromeric major satellite. Moreover, differential expression assays in early G1 cells showed that the presence of Ski is significantly associated with repression of genes localised nearby to pericentromeric DNA. In mitotic cells, chromatin immunoprecipitation assays confirmed the association of Ski to major satellite and the promoters of the most repressed genes: Mmp3, Mmp10 and Mmp13. These genes are at pericentromeric region of chromosome 9. In these promoters, the presence of Ski resulted in increased H3K9 tri-methylation levels. This Ski-dependent regulation is also observed during interphase. Consequently, Mmp activity is augmented in Ski-/- MEFs. Altogether, these data indicate that association of Ski with the pericentromeric region of chromosomes during mitosis is required to maintain the silencing bookmarks of underlying chromatin.


Subject(s)
Centromere/genetics , DNA-Binding Proteins/metabolism , Fibroblasts/cytology , Histones/metabolism , Matrix Metalloproteinases, Secreted/genetics , Proto-Oncogene Proteins/metabolism , Acetylation , Animals , Cells, Cultured , Centromere/metabolism , Down-Regulation , Fibroblasts/metabolism , Matrix Metalloproteinase 10/genetics , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 3/genetics , Methylation , Mice , Mitosis , Promoter Regions, Genetic , Transcriptional Activation
9.
Nat Cell Biol ; 21(6): 755-767, 2019 06.
Article in English | MEDLINE | ID: mdl-31110288

ABSTRACT

Mitochondria-associated membranes (MAMs) are central microdomains that fine-tune bioenergetics by the local transfer of calcium from the endoplasmic reticulum to the mitochondrial matrix. Here, we report an unexpected function of the endoplasmic reticulum stress transducer IRE1α as a structural determinant of MAMs that controls mitochondrial calcium uptake. IRE1α deficiency resulted in marked alterations in mitochondrial physiology and energy metabolism under resting conditions. IRE1α determined the distribution of inositol-1,4,5-trisphosphate receptors at MAMs by operating as a scaffold. Using mutagenesis analysis, we separated the housekeeping activity of IRE1α at MAMs from its canonical role in the unfolded protein response. These observations were validated in vivo in the liver of IRE1α conditional knockout mice, revealing broad implications for cellular metabolism. Our results support an alternative function of IRE1α in orchestrating the communication between the endoplasmic reticulum and mitochondria to sustain bioenergetics.


Subject(s)
Endoplasmic Reticulum/metabolism , Endoribonucleases/genetics , Energy Metabolism , Mitochondria/metabolism , Protein Serine-Threonine Kinases/genetics , Animals , Calcium/metabolism , Calcium Signaling/genetics , Endoplasmic Reticulum/genetics , Inositol 1,4,5-Trisphosphate Receptors/genetics , Mice , Mice, Knockout , Mitochondria/genetics
10.
J Cell Physiol ; 234(3): 2037-2050, 2019 03.
Article in English | MEDLINE | ID: mdl-30343491

ABSTRACT

Transient Receptor Potential Melastatin 4 (TRPM4) is a Ca2+ -activated and voltage-dependent monovalent cation channel, which depolarizes the plasma cell membrane, thereby modulating Ca2+ influx across Ca2+ -permeable pathways. TRPM4 is involved in different physiological processes such as T cell activation and the migration of endothelial and certain immune cells. Overexpression of this channel has been reported in various types of tumors including prostate cancer. In this study, a significant overexpression of TRPM4 was found only in samples from cancer with a Gleason score higher than 7, which are more likely to spread. To evaluate whether TRPM4 overexpression was related to the spreading capability of tumors, TRPM4 was knockdown by using shRNAs in PC3 prostate cancer cells and the effect on cellular migration and invasion was analyzed. PC3 cells with reduced levels of TRPM4 (shTRPM4) display a decrease of the migration/invasion capability. A reduction in the expression of Snail1, a canonical epithelial to mesenchymal transition (EMT) transcription factor, was also observed. Consistently, these cells showed a significant change in the expression of key EMT markers such as MMP9, E-cadherin/N-cadherin, and vimentin, indicating a partial reversion of the EMT process. Whereas, the overexpression of TRPM4 in LnCaP cells resulted in increased levels of Snail1, reduction in the expression of E-cadherin and increase in their migration potential. This study suggests a new and indirect mechanism of regulation of migration/invasion process by TRPM4 in prostate cancer cells, by inducing the expression of Snail1 gene and consequently, increasing the EMT.


Subject(s)
Epithelial-Mesenchymal Transition/physiology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , TRPM Cation Channels/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Movement , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Male , Models, Biological , Neoplasm Grading , Neoplasm Invasiveness , PC-3 Cells , Prostatic Neoplasms/genetics , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism , TRPM Cation Channels/antagonists & inhibitors , TRPM Cation Channels/genetics , Up-Regulation
11.
Biol Res ; 51(1): 36, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30290838

ABSTRACT

BACKGROUND: Whole transcriptome RNA variant analyses have shown that adenosine deaminases acting on RNA (ADAR) enzymes modify a large proportion of cellular RNAs, contributing to transcriptome diversity and cancer evolution. Despite the advances in the understanding of ADAR function in breast cancer, ADAR RNA editing functional consequences are not fully addressed. RESULTS: We characterized A to G(I) mRNA editing in 81 breast cell lines, showing increased editing at 3'UTR and exonic regions in breast cancer cells compared to immortalized non-malignant cell lines. In addition, tumors from the BRCA TCGA cohort show a 24% increase in editing over normal breast samples when looking at 571 well-characterized UTRs targeted by ADAR1. Basal-like subtype breast cancer patients with high level of ADAR1 mRNA expression shows a worse clinical outcome and increased editing in their 3'UTRs. Interestingly, editing was particularly increased in the 3'UTRs of ATM, GINS4 and POLH transcripts in tumors, which correlated with their mRNA expression. We confirmed the role of ADAR1 in this regulation using a shRNA in a breast cancer cell line (ZR-75-1). CONCLUSIONS: Altogether, these results revealed a significant association between the mRNA editing in genes related to cancer-relevant pathways and clinical outcomes, suggesting an important role of ADAR1 expression and function in breast cancer.


Subject(s)
3' Untranslated Regions/genetics , Adenosine Deaminase/genetics , Breast Neoplasms/genetics , RNA Editing/genetics , RNA Stability/genetics , RNA-Binding Proteins/genetics , Adenosine Deaminase/metabolism , Breast Neoplasms/metabolism , Cell Line, Tumor , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , RNA Stability/physiology , RNA-Binding Proteins/metabolism
12.
Mol Oncol ; 12(2): 151-165, 2018 02.
Article in English | MEDLINE | ID: mdl-28614631

ABSTRACT

Increased expression of the TRPM4 channel has been reported to be associated with the progression of prostate cancer. However, the molecular mechanism underlying its effect remains unknown. This work found that decreasing TRPM4 levels leads to the reduced proliferation of PC3 cells. This effect was associated with a decrease in total ß-catenin protein levels and its nuclear localization, and a significant reduction in Tcf/Lef transcriptional activity. Moreover, TRPM4 silencing increases the Ser33/Ser37/Thr41 ß-catenin phosphorylated population and reduces the phosphorylation of GSK-3ß at Ser9, suggesting an increase in ß-catenin degradation as the underlying mechanism. Conversely, TRPM4 overexpression in LNCaP cells increases the Ser9 inhibitory phosphorylation of GSK-3ß and the total levels of ß-catenin and its nonphosphorylated form. Finally, PC3 cells with reduced levels of TRPM4 showed a decrease in basal and stimulated phosphoactivation of Akt1, which is likely responsible for the decrease in GSK-3ß activity in these cells. Our results also suggest that the effect of TRPM4 on Akt1 is probably mediated by an alteration in the calcium/calmodulin-EGFR axis, linking TRPM4 activity with the observed effects in ß-catenin-related signaling pathways. These results suggest a role for TRPM4 channels in ß-catenin oncogene signaling and underlying mechanisms, highlighting this ion channel as a new potential target for future therapies in prostate cancer.


Subject(s)
Cell Proliferation/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TRPM Cation Channels/metabolism , beta Catenin/metabolism , Calcium/metabolism , Calmodulin/metabolism , Cell Line, Tumor , Disease Progression , Glycogen Synthase Kinase 3 beta/genetics , HEK293 Cells , Humans , Male , PC-3 Cells , Phosphorylation/genetics , Prostatic Neoplasms/genetics , Proto-Oncogene Proteins c-akt/genetics , TRPM Cation Channels/genetics , beta Catenin/genetics
13.
Biol. Res ; 51: 36, 2018. graf
Article in English | LILACS | ID: biblio-983940

ABSTRACT

BACKGROUND: Whole transcriptome RNA variant analyses have shown that adenosine deaminases acting on RNA ( ADAR ) enzymes modify a large proportion of cellular RNAs, contributing to transcriptome diversity and cancer evolution. Despite the advances in the understanding of ADAR function in breast cancer, ADAR RNA editing functional consequences are not fully addressed. RESULTS: We characterized A to G(I) mRNA editing in 81 breast cell lines, showing increased editing at 3'UTR and exonic regions in breast cancer cells compared to immortalized non-malignant cell lines. In addition, tumors from the BRCA TCGA cohort show a 24% increase in editing over normal breast samples when looking at 571 well-characterized UTRs targeted by ADAR1. Basal-like subtype breast cancer patients with high level of ADAR1 mRNA expression shows a worse clinical outcome and increased editing in their 3'UTRs. Interestingly, editing was particularly increased in the 3'UTRs of ATM, GINS4 and POLH transcripts in tumors, which correlated with their mRNA expression. We confirmed the role of ADAR1 in this regulation using a shRNA in a breast cancer cell line (ZR-75-1). CONCLUSIONS: Altogether, these results revealed a significant association between the mRNA editing in genes related to cancer-relevant pathways and clinical outcomes, suggesting an important role of ADAR1 expression and function in breast cancer.


Subject(s)
Humans , Female , Breast Neoplasms/genetics , Adenosine Deaminase/genetics , RNA-Binding Proteins/genetics , RNA Editing/genetics , Untranslated Regions/genetics , RNA Stability/genetics , Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Adenosine Deaminase/metabolism , RNA-Binding Proteins/metabolism , Gene Expression Profiling , RNA Stability/physiology , Cell Line, Tumor
14.
EMBO J ; 35(8): 845-65, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26869642

ABSTRACT

Disturbance of endoplasmic reticulum (ER) proteostasis is a common feature of amyotrophic lateral sclerosis (ALS). Protein disulfide isomerases (PDIs) areERfoldases identified as possibleALSbiomarkers, as well as neuroprotective factors. However, no functional studies have addressed their impact on the disease process. Here, we functionally characterized fourALS-linked mutations recently identified in two majorPDIgenes,PDIA1 andPDIA3/ERp57. Phenotypic screening in zebrafish revealed that the expression of thesePDIvariants induce motor defects associated with a disruption of motoneuron connectivity. Similarly, the expression of mutantPDIs impaired dendritic outgrowth in motoneuron cell culture models. Cellular and biochemical studies identified distinct molecular defects underlying the pathogenicity of thesePDImutants. Finally, targetingERp57 in the nervous system led to severe motor dysfunction in mice associated with a loss of neuromuscular synapses. This study identifiesERproteostasis imbalance as a risk factor forALS, driving initial stages of the disease.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Motor Neurons/pathology , Procollagen-Proline Dioxygenase/genetics , Protein Disulfide-Isomerases/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Animals, Genetically Modified , Electromyography , Embryo, Nonmammalian , Endoplasmic Reticulum Stress/genetics , Humans , Mice, Knockout , Mutation , Neurites/pathology , Procollagen-Proline Dioxygenase/metabolism , Protein Disulfide-Isomerases/metabolism , Zebrafish/embryology , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...