Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 401: 134196, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36115230

ABSTRACT

Ciguatoxins (CTXs) are marine toxins produced by microalgae of the genera Gambierdiscus and Fukuyoa, which are transferred through the food webs, reaching humans and causing a poisoning known as ciguatera. The cell-based assay (CBA) is commonly used for their detection because of its high sensitivity and the provided toxicological information. However, matrix effects may interfere in the CBA. In this work, γ-cyclodextrin-hexamethylene diisocyanate (γ-CD-HDI), γ-cyclodextrin-epichlorohydrin (γ-CD-EPI) and γ-CD-EPI conjugated to magnetic beads (γ-CD-EPI-MB) have been evaluated as clean-up materials for fish flesh extracts containing CTXs. The best results were achieved with γ-CD-HDI in column format, which showed a CTX1B recovery of 42% and 32% for Variola louti and Seriola dumerili, respectively, and allowed exposing cells to at least 400 mg/mL of fish flesh. This clean-up strategy provides at least 4.6 and 3.0-fold higher sensitivities to the assay for V.louti and S.dumerili, respectively, improving the reliability of CTX quantification.


Subject(s)
Ciguatoxins , Dinoflagellida , gamma-Cyclodextrins , Humans , Animals , Ciguatoxins/toxicity , Epichlorohydrin , Reproducibility of Results , Fishes , Marine Toxins
2.
Mar Drugs ; 20(4)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35447910

ABSTRACT

Ciguatera Poisoning (CP) is caused by consumption of fish or invertebrates contaminated with ciguatoxins (CTXs). Presently CP is a public concern in some temperate regions, such as Macaronesia (North-Eastern Atlantic Ocean). Toxicity analysis was performed to characterize the fish species that can accumulate CTXs and improve understanding of the ciguatera risk in this area. For that, seventeen fish specimens comprising nine species were captured from coastal waters inMadeira and Selvagens Archipelagos. Toxicity was analysed by screening CTX-like toxicity with the neuroblastoma cell-based assay (neuro-2a CBA). Afterwards, the four most toxic samples were analysed with liquid chromatography-high resolution mass spectrometry (LC-HRMS). Thirteen fish specimens presented CTX-like toxicity in their liver, but only four of these in their muscle. The liver of one specimen of Muraena augusti presented the highest CTX-like toxicity (0.270 ± 0.121 µg of CTX1B equiv·kg-1). Moreover, CTX analogues were detected with LC-HRMS, for M. augusti and Gymnothorax unicolor. The presence of three CTX analogues was identified: C-CTX1, which had been previously described in the area; dihydro-CTX2, which is reported in the area for the first time; a putative new CTX m/z 1127.6023 ([M+NH4]+) named as putative C-CTX-1109, and gambieric acid A.


Subject(s)
Ciguatera Poisoning , Ciguatoxins , Animals , Chromatography, Liquid , Ciguatoxins/chemistry , Fishes , Mass Spectrometry
3.
Anal Chem ; 92(7): 4858-4865, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32133843

ABSTRACT

The importance of ciguatoxins (CTXs) in seafood safety and their emerging occurrence in locations far away from tropical areas highlight the need for simple and low-cost methods for the sensitive and rapid detection of these potent marine toxins to protect seafood consumers. Herein, an electrochemical immunosensor for the detection of CTXs is presented. A sandwich configuration is proposed, using magnetic beads (MBs) as immobilization supports for two capture antibodies, with their combination facilitating the detection of CTX1B, CTX3C, 54-deoxyCTX1B, and 51-hydroxyCTX3C. PolyHRP-streptavidin is used for the detection of the biotinylated detector antibody. Experimental conditions are first optimized using colorimetry, and these conditions are subsequently used for electrochemical detection on electrode arrays. Limits of detection at the pg/mL level are achieved for CTX1B and 51-hydroxyCTX3C. The applicability of the immunosensor to the analysis of fish samples is demonstrated, attaining detection of CTX1B at contents as low as 0.01 µg/kg and providing results in correlation with those obtained using mouse bioassay (MBA) and cell-based assay (CBA), and confirmed by liquid chromatography coupled to high-resolution mass spectrometry (LC-ESI-HRMS). This user-friendly bioanalytical tool for the rapid detection of CTXs can be used to mitigate ciguatera risk and contribute to the protection of consumer health.


Subject(s)
Biosensing Techniques , Ciguatoxins/analysis , Electrochemical Techniques , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Chromatography, Liquid , Ciguatoxins/administration & dosage , Ciguatoxins/immunology , Fishes , Injections, Intraperitoneal , Magnetic Phenomena , Male , Mice , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...