Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 104(20): 203603, 2010 May 21.
Article in English | MEDLINE | ID: mdl-20867028

ABSTRACT

Trapping and optically interfacing laser-cooled neutral atoms are essential requirements for their use in advanced quantum technologies. Here we simultaneously realize both of these tasks with cesium atoms interacting with a multicolor evanescent field surrounding an optical nanofiber. The atoms are localized in a one-dimensional optical lattice about 200 nm above the nanofiber surface and can be efficiently interrogated with a resonant light field sent through the nanofiber. Our technique opens the route towards the direct integration of laser-cooled atomic ensembles within fiber networks, an important prerequisite for large scale quantum communication schemes. Moreover, it is ideally suited to the realization of hybrid quantum systems that combine atoms with, e.g., solid state quantum devices.

2.
Phys Rev Lett ; 99(16): 163602, 2007 Oct 19.
Article in English | MEDLINE | ID: mdl-17995250

ABSTRACT

The strong evanescent field around ultrathin unclad optical fibers bears a high potential for detecting, trapping, and manipulating cold atoms. Introducing such a fiber into a cold-atom cloud, we investigate the interaction of a small number of cold cesium atoms with the guided fiber mode and with the fiber surface. Using high resolution spectroscopy, we observe and analyze light-induced dipole forces, van der Waals interaction, and a significant enhancement of the spontaneous emission rate of the atoms. The latter can be assigned to the modification of the vacuum modes by the fiber.

SELECTION OF CITATIONS
SEARCH DETAIL
...