Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Nature ; 629(8014): 1174-1181, 2024 May.
Article in English | MEDLINE | ID: mdl-38720073

ABSTRACT

Phosphorylation of proteins on tyrosine (Tyr) residues evolved in metazoan organisms as a mechanism of coordinating tissue growth1. Multicellular eukaryotes typically have more than 50 distinct protein Tyr kinases that catalyse the phosphorylation of thousands of Tyr residues throughout the proteome1-3. How a given Tyr kinase can phosphorylate a specific subset of proteins at unique Tyr sites is only partially understood4-7. Here we used combinatorial peptide arrays to profile the substrate sequence specificity of all human Tyr kinases. Globally, the Tyr kinases demonstrate considerable diversity in optimal patterns of residues surrounding the site of phosphorylation, revealing the functional organization of the human Tyr kinome by substrate motif preference. Using this information, Tyr kinases that are most compatible with phosphorylating any Tyr site can be identified. Analysis of mass spectrometry phosphoproteomic datasets using this compendium of kinase specificities accurately identifies specific Tyr kinases that are dysregulated in cells after stimulation with growth factors, treatment with anti-cancer drugs or expression of oncogenic variants. Furthermore, the topology of known Tyr signalling networks naturally emerged from a comparison of the sequence specificities of the Tyr kinases and the SH2 phosphotyrosine (pTyr)-binding domains. Finally we show that the intrinsic substrate specificity of Tyr kinases has remained fundamentally unchanged from worms to humans, suggesting that the fidelity between Tyr kinases and their protein substrate sequences has been maintained across hundreds of millions of years of evolution.


Subject(s)
Phosphotyrosine , Protein-Tyrosine Kinases , Substrate Specificity , Tyrosine , Animals , Humans , Amino Acid Motifs , Evolution, Molecular , Mass Spectrometry , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Phosphorylation , Phosphotyrosine/metabolism , Protein-Tyrosine Kinases/drug effects , Protein-Tyrosine Kinases/metabolism , Proteome/chemistry , Proteome/metabolism , Proteomics , Signal Transduction , src Homology Domains , Tyrosine/metabolism , Tyrosine/chemistry
2.
Cell Chem Biol ; 29(4): 555-571.e11, 2022 04 21.
Article in English | MEDLINE | ID: mdl-34715055

ABSTRACT

Canonical targeting of Polycomb repressive complex 1 (PRC1) to repress developmental genes is mediated by cell-type-specific, paralogous chromobox (CBX) proteins (CBX2, 4, 6, 7, and 8). Based on their central role in silencing and their dysregulation associated with human disease including cancer, CBX proteins are attractive targets for small-molecule chemical probe development. Here, we have used a quantitative and target-specific cellular assay to discover a potent positive allosteric modulator (PAM) of CBX8. The PAM activity of UNC7040 antagonizes H3K27me3 binding by CBX8 while increasing interactions with nucleic acids. We show that treatment with UNC7040 leads to efficient and selective eviction of CBX8-containing PRC1 from chromatin, loss of silencing, and reduced proliferation across different cancer cell lines. Our discovery and characterization of UNC7040 not only reveals the most cellularly potent CBX8-specific chemical probe to date, but also corroborates a mechanism of Polycomb regulation by non-specific CBX nucleotide binding activity.


Subject(s)
Neoplasms , Polycomb Repressive Complex 1 , Cell Cycle Proteins/metabolism , Chromatin , Histones/metabolism , Humans , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Protein Binding
3.
Nucleic Acids Res ; 49(20): 11629-11642, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34086966

ABSTRACT

MettL3-MettL14 methyltransferase complex has been studied widely for its role in RNA adenine methylation. This complex is also recruited to UV- and X-ray exposed DNA damaged sites, and its methyltransfer activity is required for subsequent DNA repair, though in theory this could result from RNA methylation of short transcripts made at the site of damage. We report here that MettL3-MettL14 is active in vitro on double-stranded DNA containing a cyclopyrimidine dimer - a major lesion of UV radiation-induced products - or an abasic site or mismatches. Furthermore, N6-methyladenine (N6mA) decreases misincorporation of 8-oxo-guanine (8-oxoG) opposite to N6mA by repair DNA polymerases. When 8-oxoG is nevertheless incorporated opposite N6mA, the methylation inhibits N6mA excision from the template (correct) strand by the adenine DNA glycosylase (MYH), implying that the methylation decreases inappropriate misrepair. Finally, we observed that the N6mA reader domain of YTHDC1, which is also recruited to sites of DNA damage, binds N6mA that is located across from a single-base gap between two canonical DNA helices. This YTHDC1 complex with a gapped duplex is structurally similar to DNA complexes with FEN1 and GEN1 - two members of the nuclease family that act in nucleotide excision repair, mismatch repair and homologous recombination, and which incise distinct non-B DNA structures. Together, the parts of our study provide a plausible mechanism for N6mA writer and reader proteins acting directly on lesion-containing DNA, and suggest in vivo experiments to test the mechanisms involving methylation of adenine.


Subject(s)
Adenine/analogs & derivatives , DNA/metabolism , Methyltransferases/metabolism , Mutation , Adenine/metabolism , Binding Sites , DNA/chemistry , DNA/genetics , DNA Methylation , Humans , Methyltransferases/chemistry , Protein Binding
4.
PLoS One ; 16(6): e0251955, 2021.
Article in English | MEDLINE | ID: mdl-34106957

ABSTRACT

Newly emerged SARS-CoV-2 is the cause of an ongoing global pandemic leading to severe respiratory disease in humans. SARS-CoV-2 targets epithelial cells in the respiratory tract and lungs, which can lead to amplified chloride secretion and increased leak across epithelial barriers, contributing to severe pneumonia and consolidation of the lungs as seen in many COVID-19 patients. There is an urgent need for a better understanding of the molecular aspects that contribute to SARS-CoV-2-induced pathogenesis and for the development of approaches to mitigate these damaging pathologies. The multifunctional SARS-CoV-2 Envelope (E) protein contributes to virus assembly/egress, and as a membrane protein, also possesses viroporin channel properties that may contribute to epithelial barrier damage, pathogenesis, and disease severity. The extreme C-terminal (ECT) sequence of E also contains a putative PDZ-domain binding motif (PBM), similar to that identified in the E protein of SARS-CoV-1. Here, we screened an array of GST-PDZ domain fusion proteins using either a biotin-labeled WT or mutant ECT peptide from the SARS-CoV-2 E protein. Notably, we identified a singular specific interaction between the WT E peptide and the second PDZ domain of human Zona Occludens-1 (ZO1), one of the key regulators of TJ formation/integrity in all epithelial tissues. We used homogenous time resolve fluorescence (HTRF) as a second complementary approach to further validate this novel modular E-ZO1 interaction. We postulate that SARS-CoV-2 E interacts with ZO1 in infected epithelial cells, and this interaction may contribute, in part, to tight junction damage and epithelial barrier compromise in these cell layers leading to enhanced virus spread and severe dysfunction that leads to morbidity. Prophylactic/therapeutic intervention targeting this virus-host interaction may effectively reduce airway and/or gastrointestinal barrier damage and mitigate virus spread.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Coronavirus Envelope Proteins/metabolism , SARS-CoV-2/metabolism , Zonula Occludens-1 Protein/metabolism , COVID-19/pathology , Host-Pathogen Interactions , Humans , PDZ Domains , Protein Binding , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , SARS-CoV-2/isolation & purification , Tight Junctions/metabolism
5.
Biochem J ; 478(10): 1943-1958, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33969871

ABSTRACT

The reader ability of PHD fingers is largely limited to the recognition of the histone H3 N-terminal tail. Distinct subsets of PHDs bind either H3K4me3 (a transcriptional activator mark) or H3K4me0 (a transcriptional repressor state). Structural studies have identified common features among the different H3K4me3 effector PHDs, including (1) removal of the initiator methionine residue of H3 to prevent steric interference, (2) a groove where arginine-2 binds, and (3) an aromatic cage that engages methylated lysine-4. We hypothesize that some PHDs might have the ability to engage with non-histone ligands, as long as they adhere to these three rules. A search of the human proteome revealed an enrichment of chromatin-binding proteins that met these criteria, which we termed H3 N-terminal mimicry proteins (H3TMs). Seven H3TMs were selected, and used to screen a protein domain microarray for potential effector domains, and they all had the ability to bind H3K4me3-interacting effector domains. Furthermore, the binding affinity between the VRK1 peptide and the PHD domain of PHF2 is ∼3-fold stronger than that of PHF2 and H3K4me3 interaction. The crystal structure of PHF2 PHD finger bound with VRK1 K4me3 peptide provides a molecular basis for stronger binding of VRK1 peptide. In addition, a number of the H3TMs peptides, in their unmethylated form, interact with NuRD transcriptional repressor complex. Our findings provide in vitro evidence that methylation of H3TMs can promote interactions with PHD and Tudor domain-containing proteins and potentially block interactions with the NuRD complex. We propose that these interactions can occur in vivo as well.


Subject(s)
Histones/metabolism , Homeodomain Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Protein Serine-Threonine Kinases/metabolism , Histones/chemistry , Histones/genetics , Homeodomain Proteins/chemistry , Homeodomain Proteins/genetics , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/chemistry , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Protein Domains , Protein Interaction Domains and Motifs , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Proteome/analysis , Proteome/metabolism
6.
Viruses ; 13(2)2021 02 12.
Article in English | MEDLINE | ID: mdl-33673144

ABSTRACT

Filoviruses Ebola (EBOV) and Marburg (MARV) are devastating high-priority pathogens capable of causing explosive outbreaks with high human mortality rates. The matrix proteins of EBOV and MARV, as well as eVP40 and mVP40, respectively, are the key viral proteins that drive virus assembly and egress and can bud independently from cells in the form of virus-like particles (VLPs). The matrix proteins utilize proline-rich Late (L) domain motifs (e.g., PPxY) to hijack specific host proteins that contain WW domains, such as the HECT family E3 ligases, to facilitate the last step of virus-cell separation. We identified E3 ubiquitin ligase Smad Ubiquitin Regulatory Factor 2 (SMURF2) as a novel interactor with VP40 that positively regulates VP40 VLP release. Our results show that eVP40 and mVP40 interact with the three WW domains of SMURF2 via their PPxY motifs. We provide evidence that the eVP40-SMURF2 interaction is functional as the expression of SMURF2 positively regulates VLP egress, while siRNA knockdown of endogenous SMURF2 decreases VLP budding compared to controls. In sum, our identification of novel interactor SMURF2 adds to the growing list of identified host proteins that can regulate PPxY-mediated egress of VP40 VLPs. A more comprehensive understanding of the modular interplay between filovirus VP40 and host proteins may lead to the development of new therapies to combat these deadly infections.


Subject(s)
Ebolavirus/physiology , Hemorrhagic Fever, Ebola/enzymology , Marburg Virus Disease/enzymology , Marburgvirus/physiology , Ubiquitin-Protein Ligases/metabolism , Viral Matrix Proteins/metabolism , Virus Release , Amino Acid Motifs , Animals , Ebolavirus/chemistry , Ebolavirus/genetics , Hemorrhagic Fever, Ebola/genetics , Hemorrhagic Fever, Ebola/virology , Humans , Marburg Virus Disease/genetics , Marburg Virus Disease/virology , Marburgvirus/chemistry , Marburgvirus/genetics , Protein Binding , Ubiquitin-Protein Ligases/genetics , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics , Virion/genetics , Virion/physiology , Virus Assembly
7.
J Virol ; 95(8)2021 03 25.
Article in English | MEDLINE | ID: mdl-33536174

ABSTRACT

Filoviridae family members Ebola (EBOV) and Marburg (MARV) viruses and Arenaviridae family member Lassa virus (LASV) are emerging pathogens that can cause hemorrhagic fever and high rates of mortality in humans. A better understanding of the interplay between these viruses and the host will inform about the biology of these pathogens, and may lead to the identification of new targets for therapeutic development. Notably, expression of the filovirus VP40 and LASV Z matrix proteins alone drives assembly and egress of virus-like particles (VLPs). The conserved PPxY Late (L) domain motifs in the filovirus VP40 and LASV Z proteins play a key role in the budding process by mediating interactions with select host WW-domain containing proteins that then regulate virus egress and spread. To identify the full complement of host WW-domain interactors, we utilized WT and PPxY mutant peptides from EBOV and MARV VP40 and LASV Z proteins to screen an array of GST-WW-domain fusion proteins. We identified WW domain-containing oxidoreductase (WWOX) as a novel PPxY-dependent interactor, and we went on to show that full-length WWOX physically interacts with eVP40, mVP40 and LASV Z to negatively regulate egress of VLPs and of a live VSV/Ebola recombinant virus (M40). Interestingly, WWOX is a versatile host protein that regulates multiple signaling pathways and cellular processes via modular interactions between its WW-domains and PPxY motifs of select interacting partners, including host angiomotin (AMOT). Notably, we demonstrated recently that expression of endogenous AMOT not only positively regulates egress of VLPs, but also promotes egress and spread of live EBOV and MARV. Toward the mechanism of action, we show that the competitive and modular interplay among WWOX-AMOT-VP40/Z regulates VLP and M40 virus egress. Thus, WWOX is the newest member of an emerging group of host WW-domain interactors (e.g. BAG3; YAP/TAZ) that negatively regulate viral egress. These findings further highlight the complex interplay of virus-host PPxY/WW-domain interactions and their potential impact on the biology of both the virus and the host during infection.Author Summary Filoviruses (Ebola [EBOV] and Marburg [MARV]) and arenavirus (Lassa virus; LASV) are zoonotic, emerging pathogens that cause outbreaks of severe hemorrhagic fever in humans. A fundamental understanding of the virus-host interface is critical for understanding the biology of these viruses and for developing future strategies for therapeutic intervention. Here, we identified host WW-domain containing protein WWOX as a novel interactor with VP40 and Z, and showed that WWOX inhibited budding of VP40/Z virus-like particles (VLPs) and live virus in a PPxY/WW-domain dependent manner. Our findings are important to the field as they expand the repertoire of host interactors found to regulate PPxY-mediated budding of RNA viruses, and further highlight the competitive interplay and modular virus-host interactions that impact both the virus lifecycle and the host cell.

8.
J Cell Biol ; 219(11)2020 11 02.
Article in English | MEDLINE | ID: mdl-33007084

ABSTRACT

In neurons, dendrites form the major sites of information receipt and integration. It is thus vital that, during development, the dendritic arbor is adequately formed to enable proper neural circuit formation and function. While several known processes shape the arbor, little is known of those that govern dendrite branching versus extension. Here, we report a new mechanism instructing dendrites to branch versus extend. In it, glutamate signaling activates mGluR5 receptors to promote Ckd5-mediated phosphorylation of the C-terminal PDZ-binding motif of delta-catenin. The phosphorylation state of this motif determines delta-catenin's ability to bind either Pdlim5 or Magi1. Whereas the delta:Pdlim5 complex enhances dendrite branching at the expense of elongation, the delta:Magi1 complex instead promotes lengthening. Our data suggest that these complexes affect dendrite development by differentially regulating the small-GTPase RhoA and actin-associated protein Cortactin. We thus reveal a "phospho-switch" within delta-catenin, subject to a glutamate-mediated signaling pathway, that assists in balancing the branching versus extension of dendrites during neural development.


Subject(s)
Catenins/metabolism , Dendrites/physiology , Guanylate Kinases/metabolism , Hippocampus/cytology , LIM Domain Proteins/metabolism , Neurogenesis , Neurons/cytology , Animals , Catenins/genetics , Guanylate Kinases/genetics , HEK293 Cells , Hippocampus/metabolism , Humans , LIM Domain Proteins/genetics , Neurons/metabolism , Phosphorylation , Rats , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism , Delta Catenin
9.
Epigenetics Chromatin ; 13(1): 44, 2020 10 23.
Article in English | MEDLINE | ID: mdl-33097091

ABSTRACT

The chromatin-binding E3 ubiquitin ligase ubiquitin-like with PHD and RING finger domains 1 (UHRF1) contributes to the maintenance of aberrant DNA methylation patterning in cancer cells through multivalent histone and DNA recognition. The tandem Tudor domain (TTD) of UHRF1 is well-characterized as a reader of lysine 9 di- and tri-methylation on histone H3 (H3K9me2/me3) and, more recently, lysine 126 di- and tri-methylation on DNA ligase 1 (LIG1K126me2/me3). However, the functional significance and selectivity of these interactions remain unclear. In this study, we used protein domain microarrays to search for additional readers of LIG1K126me2, the preferred methyl state bound by the UHRF1 TTD. We show that the UHRF1 TTD binds LIG1K126me2 with high affinity and selectivity compared to other known methyllysine readers. Notably, and unlike H3K9me2/me3, the UHRF1 plant homeodomain (PHD) and its N-terminal linker (L2) do not contribute to multivalent LIG1K126me2 recognition along with the TTD. To test the functional significance of this interaction, we designed a LIG1K126me2 cell-penetrating peptide (CPP). Consistent with LIG1 knockdown, uptake of the CPP had no significant effect on the propagation of DNA methylation patterning across the genomes of bulk populations from high-resolution analysis of several cancer cell lines. Further, we did not detect significant changes in DNA methylation patterning from bulk cell populations after chemical or genetic disruption of lysine methyltransferase activity associated with LIG1K126me2 and H3K9me2. Collectively, these studies identify UHRF1 as a selective reader of LIG1K126me2 in vitro and further implicate the histone and non-histone methyllysine reader activity of the UHRF1 TTD as a dispensable domain function for cancer cell DNA methylation maintenance.


Subject(s)
CCAAT-Enhancer-Binding Proteins/metabolism , DNA Methylation , Gene Expression Regulation, Neoplastic , Histone Code , Ubiquitin-Protein Ligases/metabolism , CCAAT-Enhancer-Binding Proteins/chemistry , Epigenesis, Genetic , HCT116 Cells , HeLa Cells , Histones/chemistry , Histones/metabolism , Humans , Lysine/metabolism , Methylation , Protein Processing, Post-Translational , Tudor Domain , Ubiquitin-Protein Ligases/chemistry
10.
Epigenetics Chromatin ; 13(1): 3, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31980037

ABSTRACT

BACKGROUND: Plant homeodomain (PHD) fingers are central "readers" of histone post-translational modifications (PTMs) with > 100 PHD finger-containing proteins encoded by the human genome. Many of the PHDs studied to date bind to unmodified or methylated states of histone H3 lysine 4 (H3K4). Additionally, many of these domains, and the proteins they are contained in, have crucial roles in the regulation of gene expression and cancer development. Despite this, the majority of PHD fingers have gone uncharacterized; thus, our understanding of how these domains contribute to chromatin biology remains incomplete. RESULTS: We expressed and screened 123 of the annotated human PHD fingers for their histone binding preferences using reader domain microarrays. A subset (31) of these domains showed strong preference for the H3 N-terminal tail either unmodified or methylated at H3K4. These H3 readers were further characterized by histone peptide microarrays and/or AlphaScreen to comprehensively define their H3 preferences and PTM cross-talk. CONCLUSIONS: The high-throughput approaches utilized in this study establish a compendium of binding information for the PHD reader family with regard to how they engage histone PTMs and uncover several novel reader domain-histone PTM interactions (i.e., PHRF1 and TRIM66). This study highlights the usefulness of high-throughput analyses of histone reader proteins as a means of understanding how chromatin engagement occurs biochemically.


Subject(s)
Histones/metabolism , Homeodomain Proteins/metabolism , Binding Sites , Histones/chemistry , Homeodomain Proteins/chemistry , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Methylation , Protein Binding , Protein Processing, Post-Translational
11.
PLoS Pathog ; 16(1): e1008231, 2020 01.
Article in English | MEDLINE | ID: mdl-31905227

ABSTRACT

Ebola (EBOV) and Marburg (MARV) are members of the Filoviridae family, which continue to emerge and cause sporadic outbreaks of hemorrhagic fever with high mortality rates. Filoviruses utilize their VP40 matrix protein to drive virion assembly and budding, in part, by recruitment of specific WW-domain-bearing host proteins via its conserved PPxY Late (L) domain motif. Here, we screened an array of 115 mammalian, bacterially expressed and purified WW-domains using a PPxY-containing peptide from MARV VP40 (mVP40) to identify novel host interactors. Using this unbiased approach, we identified Yes Associated Protein (YAP) and Transcriptional co-Activator with PDZ-binding motif (TAZ) as novel mVP40 PPxY interactors. YAP and TAZ function as downstream transcriptional effectors of the Hippo signaling pathway that regulates cell proliferation, migration and apoptosis. We demonstrate that ectopic expression of YAP or TAZ along with mVP40 leads to significant inhibition of budding of mVP40 VLPs in a WW-domain/PPxY dependent manner. Moreover, YAP colocalized with mVP40 in the cytoplasm, and inhibition of mVP40 VLP budding was more pronounced when YAP was localized predominantly in the cytoplasm rather than in the nucleus. A key regulator of YAP nuclear/cytoplasmic localization and function is angiomotin (Amot); a multi-PPxY containing protein that strongly interacts with YAP WW-domains. Interestingly, we found that expression of PPxY-containing Amot rescued mVP40 VLP egress from either YAP- or TAZ-mediated inhibition in a PPxY-dependent manner. Importantly, using a stable Amot-knockdown cell line, we found that expression of Amot was critical for efficient egress of mVP40 VLPs as well as egress and spread of authentic MARV in infected cell cultures. In sum, we identified novel negative (YAP/TAZ) and positive (Amot) regulators of MARV VP40-mediated egress, that likely function in part, via competition between host and viral PPxY motifs binding to modular host WW-domains. These findings not only impact our mechanistic understanding of virus budding and spread, but also may impact the development of new antiviral strategies.


Subject(s)
Filoviridae/physiology , Marburgvirus/physiology , Molecular Mimicry , Proto-Oncogene Proteins c-yes/metabolism , Viral Matrix Proteins/physiology , Virus Release , Angiomotins , Binding Sites , Cell Membrane/metabolism , Gene Knockout Techniques , HEK293 Cells , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Microfilament Proteins/metabolism , Models, Molecular , PDZ Domains , Protein Domains , Recombinant Fusion Proteins/metabolism
12.
bioRxiv ; 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33398268

ABSTRACT

Newly emerged SARS-CoV-2 is the cause of an ongoing global pandemic leading to severe respiratory disease in humans. SARS-CoV-2 targets epithelial cells in the respiratory tract and lungs, which can lead to amplified chloride secretion and increased leak across epithelial barriers, contributing to severe pneumonia and consolidation of the lungs as seen in many COVID-19 patients. There is an urgent need for a better understanding of the molecular aspects that contribute to SARS-CoV-2 induced pathogenesis and for the development of approaches to mitigate these damaging pathologies. The multifunctional SARS-CoV-2 Envelope (E) protein contributes to virus assembly/egress, and as a membrane protein, also possesses viroporin channel properties that may contribute to epithelial barrier damage, pathogenesis, and disease severity. The extreme C-terminal (ECT) sequence of E also contains a putative PDZ-domain binding motif (PBM), similar to that identified in the E protein of SARS-CoV-1. Here, we screened an array of GST-PDZ domain fusion proteins using either a biotin-labeled WT or mutant ECT peptide from the SARS-CoV-2 E protein. Notably, we identified a singular specific interaction between the WT E peptide and the second PDZ domain of human Zona Occludens-1 (ZO1), one of the key regulators of TJ formation/integrity in all epithelial tissues. We used homogenous time resolve fluorescence (HTRF) as a second complementary approach to further validate this novel modular E-ZO1 interaction. We postulate that SARS-CoV-2 E interacts with ZO1 in infected epithelial cells, and this interaction may contribute, in part, to tight junction damage and epithelial barrier compromise in these cell layers leading to enhanced virus spread and severe respiratory dysfunction that leads to morbidity. Prophylactic/therapeutic intervention targeting this virus-host interaction may effectively reduce airway barrier damage and mitigate virus spread.

13.
Methods ; 184: 4-12, 2020 12 01.
Article in English | MEDLINE | ID: mdl-31449908

ABSTRACT

Signal transduction is driven by protein interactions that are controlled by posttranslational modifications (PTM). Usually, protein domains are responsible for "reading" the PTM signal deposited on the interacting partners. Protein domain microarrays have been developed as a high throughput platform to facilitate the rapid identification of protein-protein interactions, and this approach has become broadly used in biomedical research. In this review, we will summarize the history, development and applications of this technique, including the use of protein domain microarrays in identifying both novel protein-protein interactions and small molecules that block these interactions. We will focus on the approaches we use in the Protein Array and Analysis Core - the PAAC - at MD Anderson Cancer Center. We will also address the technical limitations and discuss future directions.


Subject(s)
Histone Code , Protein Array Analysis/methods , Protein Interaction Domains and Motifs/genetics , Protein Interaction Mapping/methods , Signal Transduction/genetics , Animals , Humans , Models, Animal , Protein Interaction Maps/genetics , Protein Processing, Post-Translational
14.
Genes Dev ; 33(23-24): 1702-1717, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31699778

ABSTRACT

The establishment of polyubiquitin conjugates with distinct linkages play important roles in the DNA damage response. Much remains unknown about the regulation of linkage-specific ubiquitin signaling at sites of DNA damage. Here we reveal that Cezanne (also known as Otud7B) deubiquitinating enzyme promotes the recruitment of Rap80/BRCA1-A complex by binding to Lys63-polyubiquitin and targeting Lys11-polyubiquitin. Using a ubiquitin binding domain protein array screen, we identify that the UBA domains of Cezanne and Cezanne2 (also known as Otud7A) selectively bind to Lys63-linked polyubiquitin. Increased Lys11-linkage ubiquitination due to lack of Cezanne DUB activity compromises the recruitment of Rap80/BRCA1-A. Cezanne2 interacts with Cezanne, facilitating Cezanne in the recruitment of Rap80/BRCA1-A, Rad18, and 53BP1, in cellular resistance to ionizing radiation and DNA repair. Our work presents a model that Cezanne serves as a "reader" of the Lys63-linkage polyubiquitin at DNA damage sites and an "eraser" of the Lys11-linkage ubiquitination, indicating a crosstalk between linkage-specific ubiquitination at DNA damage sites.


Subject(s)
DNA Damage , DNA Repair/genetics , Endopeptidases/genetics , Endopeptidases/metabolism , Polyubiquitin/metabolism , Signal Transduction/physiology , Cell Line, Tumor , DNA Damage/radiation effects , DNA-Binding Proteins , Deubiquitinating Enzymes/genetics , Deubiquitinating Enzymes/metabolism , Gene Knockdown Techniques , HEK293 Cells , Histone Chaperones , Humans , Lysine/metabolism , Nuclear Proteins , Protein Array Analysis , Protein Binding , Protein Domains , Protein Transport/genetics , Radiation, Ionizing
15.
Cell Chem Biol ; 26(10): 1365-1379.e22, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31422906

ABSTRACT

Polycomb-directed repression of gene expression is frequently misregulated in human diseases. A quantitative and target-specific cellular assay was utilized to discover the first potent positive allosteric modulator (PAM) peptidomimetic, UNC4976, of nucleic acid binding by CBX7, a chromodomain methyl-lysine reader of Polycomb repressive complex 1. The PAM activity of UNC4976 resulted in enhanced efficacy across three orthogonal cellular assays by simultaneously antagonizing H3K27me3-specific recruitment of CBX7 to target genes while increasing non-specific binding to DNA and RNA. PAM activity thereby reequilibrates PRC1 away from H3K27me3 target regions. Together, our discovery and characterization of UNC4976 not only revealed the most cellularly potent PRC1-specific chemical probe to date, but also uncovers a potential mechanism of Polycomb regulation with implications for non-histone lysine methylated interaction partners.


Subject(s)
Drug Discovery , Peptidomimetics/pharmacology , Polycomb Repressive Complex 1/metabolism , Allosteric Regulation/drug effects , Animals , HEK293 Cells , HeLa Cells , Humans , Mice , Peptidomimetics/chemistry
17.
Sci Signal ; 12(563)2019 01 08.
Article in English | MEDLINE | ID: mdl-30622194

ABSTRACT

Bone resorption by osteoclasts is essential for bone homeostasis. The kinase Src promotes osteoclast activity and is activated in osteoclasts by the receptor-type tyrosine phosphatase PTPROt. In other contexts, however, PTPROt can inhibit Src activity. Through in vivo and in vitro experiments, we show that PTPROt is bifunctional and can dephosphorylate Src both at its inhibitory residue Tyr527 and its activating residue Tyr416 Whereas wild-type and PTPROt knockout mice exhibited similar bone masses, mice in which a putative C-terminal phosphorylation site, Tyr399, in endogenous PTPROt was replaced with phenylalanine had increased bone mass and reduced osteoclast activity. Osteoclasts from the knock-in mice also showed reduced Src activity. Experiments in cultured cells and in osteoclasts derived from both mouse strains demonstrated that the absence of phosphorylation at Tyr399 caused PTPROt to dephosphorylate Src at the activating site pTyr416 In contrast, phosphorylation of PTPROt at Tyr399 enabled PTPROt to recruit Src through Grb2 and to dephosphorylate Src at the inhibitory site Tyr527, thus stimulating Src activity. We conclude that reversible phosphorylation of PTPROt at Tyr399 is a molecular switch that selects between its opposing activities toward Src and maintains a coherent signaling output, and that blocking this phosphorylation event can induce physiological effects in vivo. Because most receptor-type tyrosine phosphatases contain potential phosphorylation sites at their C termini, we propose that preventing phosphorylation at these sites or its consequences may offer an alternative to inhibiting their catalytic activity to achieve therapeutic benefit.


Subject(s)
Bone and Bones/metabolism , Osteoclasts/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism , Signal Transduction , Tyrosine/metabolism , src-Family Kinases/metabolism , Animals , Bone Resorption/genetics , Bone Resorption/metabolism , Cells, Cultured , HEK293 Cells , Humans , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Osteoclasts/cytology , Phosphorylation , Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics , Tyrosine/genetics
19.
Diseases ; 6(3)2018 Jul 13.
Article in English | MEDLINE | ID: mdl-30011814

ABSTRACT

Lassa fever virus (LFV) belongs to the Arenaviridae family and can cause acute hemorrhagic fever in humans. The LFV Z protein plays a central role in virion assembly and egress, such that independent expression of LFV Z leads to the production of virus-like particles (VLPs) that mimic egress of infectious virus. LFV Z contains both PTAP and PPPY L-domain motifs that are known to recruit host proteins that are important for mediating efficient virus egress and spread. The viral PPPY motif is known to interact with specific host WW-domain bearing proteins. Here we identified host WW-domain bearing protein BCL2 Associated Athanogene 3 (BAG3) as a LFV Z PPPY interactor using our proline-rich reading array of WW-domain containing mammalian proteins. BAG3 is a stress-induced molecular co-chaperone that functions to regulate cellular protein homeostasis and cell survival via Chaperone-Assisted Selective Autophagy (CASA). Similar to our previously published findings for the VP40 proteins of Ebola and Marburg viruses, our results using VLP budding assays, BAG3 knockout cells, and confocal microscopy indicate that BAG3 is a WW-domain interactor that negatively regulates egress of LFV Z VLPs, rather than promoting VLP release. Our results suggest that CASA and specifically BAG3 may represent a novel host defense mechanism, whereby BAG3 may dampen egress of several hemorrhagic fever viruses by interacting and interfering with the budding function of viral PPxY-containing matrix proteins.

20.
Biochemistry ; 57(14): 2140-2149, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29558110

ABSTRACT

Multivalent binding is an efficient means to enhance the affinity and specificity of chemical probes targeting multidomain proteins in order to study their function and role in disease. While the theory of multivalent binding is straightforward, physical and structural characterization of bivalent binding encounters multiple technical difficulties. We present a case study where a combination of experimental techniques and computational simulations was used to comprehensively characterize the binding and structure-affinity relationships for a series of Bromosporine-based bivalent bromodomain ligands with a bivalent protein, Transcription Initiation Factor TFIID subunit 1 (TAF1). Experimental techniques-Isothermal Titration Calorimetry, X-ray Crystallography, Circular Dichroism, Size Exclusion Chromatography-Multi-Angle Light Scattering, and Surface Plasmon Resonance-were used to determine structures, binding affinities, and kinetics of monovalent ligands and bivalent ligands with varying linker lengths. The experimental data for monomeric ligands were fed into explicit computational simulations, in which both ligand and protein species were present in a broad range of concentrations, and in up to a 100 s time regime, to match experimental conditions. These simulations provided accurate estimates for apparent affinities (in good agreement with experimental data), individual dissociation microconstants and other microscopic details for each type of protein-ligand complex. We conclude that the expected efficiency of bivalent ligands in a cellular context is difficult to estimate by a single technique in vitro, due to higher order associations favored at the concentrations used, and other complicating processes. Rather, a combination of structural, biophysical, and computational approaches should be utilized to estimate and characterize multivalent interactions.


Subject(s)
Histone Acetyltransferases/chemistry , TATA-Binding Protein Associated Factors/chemistry , Transcription Factor TFIID/chemistry , Calorimetry , Crystallography, X-Ray , Dynamic Light Scattering , Histone Acetyltransferases/metabolism , Humans , Molecular Probes/metabolism , TATA-Binding Protein Associated Factors/metabolism , Transcription Factor TFIID/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...