Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 100(1-1): 012115, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31499782

ABSTRACT

Deep learning has been immensely successful at a variety of tasks, ranging from classification to artificial intelligence. Learning corresponds to fitting training data, which is implemented by descending a very high-dimensional loss function. Understanding under which conditions neural networks do not get stuck in poor minima of the loss, and how the landscape of that loss evolves as depth is increased, remains a challenge. Here we predict, and test empirically, an analogy between this landscape and the energy landscape of repulsive ellipses. We argue that in fully connected deep networks a phase transition delimits the over- and underparametrized regimes where fitting can or cannot be achieved. In the vicinity of this transition, properties of the curvature of the minima of the loss (the spectrum of the Hessian) are critical. This transition shares direct similarities with the jamming transition by which particles form a disordered solid as the density is increased, which also occurs in certain classes of computational optimization and learning problems such as the perceptron. Our analysis gives a simple explanation as to why poor minima of the loss cannot be encountered in the overparametrized regime. Interestingly, we observe that the ability of fully connected networks to fit random data is independent of their depth, an independence that appears to also hold for real data. We also study a quantity Δ which characterizes how well (Δ<0) or badly (Δ>0) a datum is learned. At the critical point it is power-law distributed on several decades, P_{+}(Δ)∼Δ^{θ} for Δ>0 and P_{-}(Δ)∼(-Δ)^{-γ} for Δ<0, with exponents that depend on the choice of activation function. This observation suggests that near the transition the loss landscape has a hierarchical structure and that the learning dynamics is prone to avalanche-like dynamics, with abrupt changes in the set of patterns that are learned.

2.
Phys Chem Chem Phys ; 19(20): 12585-12603, 2017 May 24.
Article in English | MEDLINE | ID: mdl-28367548

ABSTRACT

Machine learning techniques are being increasingly used as flexible non-linear fitting and prediction tools in the physical sciences. Fitting functions that exhibit multiple solutions as local minima can be analysed in terms of the corresponding machine learning landscape. Methods to explore and visualise molecular potential energy landscapes can be applied to these machine learning landscapes to gain new insight into the solution space involved in training and the nature of the corresponding predictions. In particular, we can define quantities analogous to molecular structure, thermodynamics, and kinetics, and relate these emergent properties to the structure of the underlying landscape. This Perspective aims to describe these analogies with examples from recent applications, and suggest avenues for new interdisciplinary research.

SELECTION OF CITATIONS
SEARCH DETAIL
...