Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 11(48): 6425-34, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26479496

ABSTRACT

Polyimides (PIs) have been praised for their high thermal stability, high modulus of elasticity and tensile strength, ease of fabrication, and moldability. They are currently the standard choice for both substrates for flexible electronics and space shielding, as they render high temperature and UV stability and toughness. However, their poor thermal conductivity and completely electrically insulating characteristics have caused other limitations, such as thermal management challenges for flexible high-power electronics and spacecraft electrostatic charging. In order to target these issues, a hybrid of PI with 3D-graphene (3D-C), 3D-C/PI, is developed here. This composite renders extraordinary enhancements of thermal conductivity (one order of magnitude) and electrical conductivity (10 orders of magnitude). It withstands and keeps a stable performance throughout various bending and thermal cycles, as well as the oxidative and aggressive environment of ground-based, simulated space environments. This makes this new hybrid film a suitable material for flexible space applications.

2.
Nanotechnology ; 25(38): 385702, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25181280

ABSTRACT

The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND's size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques.

3.
Langmuir ; 26(1): 191-201, 2010 Jan 05.
Article in English | MEDLINE | ID: mdl-19715329

ABSTRACT

Copper (Cu) has been extensively used as an interconnect material for microelectronic devices because of its high electrical and thermal conductivity and excellent electromigration resistance. However, the formation of relatively rough Cu surfaces ( approximately 5 nm roughness) and Cu-oxide layers upon exposure to air still hinders their reliable application in a wide range of fields. In this article, we show the potential values of highly stable and ultrasmooth polycrystalline bare Cu obtained by simple annealing and chemical modification for a wide range of Cu-based electronic devices. The morphological properties and oxidation behavior of annealed Cu surfaces, before and after coating by self-assembled monolayers of terephthalic acid (TPA), were examined upon exposure to ambient air conditions ( approximately 110 days). Thin films of polycrystalline Cu, deposited on top of an adhesion layer of tantalum nitride (TaN) and annealed for 8 h at 580 degrees C under 2 x 10(-7) Torr, provided ultrasmooth Cu surfaces (R(rms) = 0.15-1.1 nm for fresh samples) and had a stable Cu-oxide layer after 65 days ( approximately 3.5 nm). These observations were perceived to be superior to nonannealed polycrystalline Cu samples. Coating fresh (oxide-free) samples of ultrasmooth Cu with TPA molecules created a closely packed monolayer with a standing-up phase configuration and molecular coverage of approximately 90%. The TPA-coated Cu surface has not shown any detectable oxidation during the first 2 weeks of exposure. The protection efficiency of this layer was found to be superior to those reported earlier on polycrystalline Cu surfaces. The oxidation mechanisms of both annealed and nonannealed Cu surfaces are presented and discussed.

4.
Nano Lett ; 8(6): 1689-94, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18484776

ABSTRACT

Scanning tunneling spectroscopy in the shell-filling regime was carried out at room temperature to investigate the size dependence of the band gap and single-electron charging energy of single Si quantum dots (QDs). The results are compared with model calculation. A 12-fold multiple staircase structure was observed for a QD of about 4.3 nm diameter, reflecting the degeneracy of the first energy level, as expected from theoretical calculations. The systematic broadening of the tunneling spectroscopy peaks with decreasing dot diameter is attributed to the reduced barrier height for smaller dot sizes and to the splitting of the first energy level.


Subject(s)
Microscopy, Scanning Tunneling/methods , Quantum Dots , Silicon/chemistry , Electron Transport , Electrons , Materials Testing , Particle Size , Temperature
5.
Nat Mater ; 2(7): 482-6, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12876564

ABSTRACT

Diamond is a unique semiconductor for the fabrication of electronic and opto-electronic devices because of its exceptional physical and chemical properties. However, a serious obstacle to the realization of diamond-based devices is the lack of n-type diamond with satisfactory electrical properties. Here we show that high-conductivity n-type diamond can be achieved by deuteration of particularly selected homo-epitaxially grown (100) boron-doped diamond layers. Deuterium diffusion through the entire boron-doped layer leads to the passivation of the boron acceptors and to the conversion from highly p-type to n-type conductivity due to the formation of shallow donors with ionization energy of 0.23 eV. Electrical conductivities as high as 2omega(-1) x cm(-1) with electron mobilities of the order of a few hundred cm2 x V(-1) x s(-1) are measured at 300 K for samples with electron concentrations of several 10(16) x cm(-3). The formation and break-up of deuterium-related complexes, due to some excess deuterium in the deuterated layer, seem to be responsible for the reversible p- to n-type conversion. To the best of our knowledge, this is the first time such an effect has been observed in an elemental semiconductor.


Subject(s)
Boron , Deuterium , Diamond , Electric Conductivity , Manufactured Materials , Spectrometry, Mass, Secondary Ion , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...