Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Virol ; 164(4): 1027-1036, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30740636

ABSTRACT

This paper describes a preclinical study analyzing the immunogenicity and protective efficacy of Kazfluvac®, an adjuvant-based inactivated pandemic influenza A/H5N1 virus vaccine. In this study, laboratory animals (ferrets and mice) were vaccinated by the intramuscular or intraperitoneal route at an interval of 14 days with two doses of the vaccine containing different concentrations of influenza virus hemagglutinin (HA) protein. HA protein without adjuvant (aluminum hydroxide and Merthiolate) was used as a control. As a negative control, we utilized PBS. We assessed the protective efficacy of the candidate vaccine by analyzing the response to challenge with the influenza virus strain A/chicken/Astana/6/05 (H5N1). Our experimental results revealed substantially reduced clinical disease and an increased antibody response, as determined by hemagglutination-inhibition (HAI) test and microneutralization assay (MNA). This study showed that the candidate vaccine is safe and elicits an antigen-dose-dependent serum antibody response. In summary, we determined the optimum antigen dose in a Kazfluvac® adjuvant formulation required for induction of heightened immunogenicity and protective efficacy to mitigate H5N1 disease in experimental animals, suggesting its readiness for clinical studies in humans.


Subject(s)
Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Viral/immunology , Female , Ferrets , Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza A Virus, H5N1 Subtype/genetics , Influenza Vaccines/administration & dosage , Influenza, Human/immunology , Influenza, Human/virology , Male , Mice , Mice, Inbred BALB C , Neutralization Tests , Pandemics , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/genetics , Vaccines, Inactivated/immunology
2.
J Med Virol ; 90(1): 41-49, 2018 01.
Article in English | MEDLINE | ID: mdl-28842994

ABSTRACT

The producers of influenza vaccines are not capable today to meet the global demand for an influenza vaccine in case of pandemic, so the World Health Organization recommends to develop the own influenza vaccine production in each country. A domestic preservative- and adjuvant-free trivalent split vaccine against seasonal influenza was developed at the Research Institute for Biological Safety Problems. The paper presents the results of assessing safety and immunogenicity of the influenza split vaccine after single immunization of healthy volunteers aged 18-50 years in the course of Phase I Clinical Trials. This study was randomized, blind, and placebo-controlled. The volunteers were intramuscularly vaccinated with a dose of split vaccine or placebo. The study has shown that all local and systemic reactions had low degree of manifestation and short-term character, so there was no need in medication. Serious side effects were not observed. On day 21 post vaccination the portion of vaccinated persons with fourfold seroconversions to influenza А/H1N1pdm09 virus was 100.0%, to influenza А/H3N2 virus-95.5%, to influenza B virus-81.8%, and in placebo group this index was 0%. Seroprotection rates against influenza А/H1N1pdm09, А/H3N2 and B viruses were 95.5, 86.3, and 72.7%, respectively. Geometric mean titers (GMT) of antibodies by day 21 post vaccination reached 175.7 for influenza А/H1N1pdm09 virus, 64.2 for influenza А/H3N2 virus, and 37.6 for influenza B virus; in placebo group GMT growth was not observed. So, the seasonal influenza split vaccine is well tolerated and fits all immunogenicity criteria for human influenza vaccines.


Subject(s)
Immunogenicity, Vaccine , Influenza Vaccines/adverse effects , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Adjuvants, Immunologic , Adolescent , Adult , Antibodies, Viral/blood , Female , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza B virus/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/immunology , Influenza, Human/virology , Male , Middle Aged , Pandemics/prevention & control , Preservatives, Pharmaceutical , Seasons , Vaccination , Vaccines, Inactivated/administration & dosage , Young Adult
3.
J Med Virol ; 89(7): 1168-1173, 2017 07.
Article in English | MEDLINE | ID: mdl-28160490

ABSTRACT

The paper describes the results of preclinical testing of the preparation "Vaccine allantoic split-virus inactivated against seasonal influenza." Acute toxicity and local irritating effect, anaphylactic reactions to different antigens (vaccine and ovalbumin), delayed-type hypersensitivity to ram erythrocytes, humoral immune response in hemaggtination reaction, immunogenic activity was studied in laboratory animals of various species (mice, rats, guinea pigs). Comparative analysis of the results from testing immunogenic activity of the preparation under study and the commercial influenza vaccines was performed. The preclinical testing has demonstrated safety and immune response of the seasonal split influenza vaccine, so it may be recommended for clinical study on limited contingent of volunteers.


Subject(s)
Drug Evaluation, Preclinical , Influenza Vaccines/adverse effects , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Animals , Antibodies, Viral/blood , Erythrocytes , Guinea Pigs , Humans , Hypersensitivity, Delayed/prevention & control , Immunogenicity, Vaccine , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza, Human/immunology , Mice , Orthomyxoviridae Infections/prevention & control , Preservatives, Pharmaceutical , Rats , Seasons , Sheep , Vaccines, Inactivated/adverse effects , Vaccines, Inactivated/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...