Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(11): e22344, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38058610

ABSTRACT

Heavy metals pose a serious environmental threat on a global scale due to their toxicity towards livings. Therefore, removing harmful metals from the environment has become more challenging in recent years. The objective of this study is to isolate, examine, and characterize naturally existing bacteria that possess the ability to mitigate and detoxify heavy metals such as cadmium, mercury, and lead. The selected bacteria SMA3 actively demonstrated metal tolerance during screening and was then employed for biosorption study using a lab-scale technique. The bacterium belonged to Brevundimonas sp., according to 16 S rRNA analysis. To enhance the removal efficiency of SMA3, response surface methodology (RSM) was employed, resulting in the identification of optimized conditions (pH 7, temperature 30 °C and shaking speed 120 rpm) for achieving maximum removal percentage (69.5 % of Cd, 58.6 % of Hg, and 85.1 % of Pb) within 72 h. The structural changes induced by microbial treatment were demonstrated by comparing the findings of FESEM images and FTIR spectra confirming the disappearance of C ^ C, C]O peaks along with C]O, C-O-C, C-H, and O-H bond destabilization following bioaccumulation. Moreover, in terms of phytotoxicity evaluation, it was observed that the treated soil, containing both heavy metals and the selected potent bacterial strain, exhibited reduced toxicity, resulting in improved germination and growth parameters for the seeds of Solanum lycopersicum (tomato plant). Overall, the selected bacterial strain demonstrated its potential for effectively removing multiple metals from the metal contaminated environment.

2.
Environ Res ; 238(Pt 1): 117126, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37716383

ABSTRACT

Given the rise in both usage and disposal of dangerous electronics, there is a catastrophic rise in assemblage of electronic waste (e-waste). E-waste including various plastic resins are among the most frequently discarded materials in electronic gadgets. In current digital era, managing e-waste has become universal concern. From the viewpoint of persisting lacuna of e-waste managing methods, the current study is designed to fabricate an eco-friendly e-waste treatment with native soil bacteria employing an enrichment culture method. In the presence of e-waste, indigenous soil microbes were stimulated to degrade e-waste. Microbial cultures were isolated using enrichment medium containing acrylonitrile-butadiene styrene (ABS) as the primary carbon source. Priestia aryabhattai MGP1 was found to be the most dominant e-polymer degrading bacterial isolate, as it was reported to degrade ABS plastic in disposed-off television casings. Furthermore, to increase degradation potential of MGP1, Response Surface Methodology (RSM) was adopted which resulted in optimized conditions (pH 7, shaking-speed 120 rpm, and temperature 30 °C), for maximum degradation (18.88%) after 2 months. The structural changes induced by microbial treatment were demonstrated by comparing the findings of Field emission scanning electron microscopy (FESEM) images and Fourier Transform Infrared (FTIR) spectra confirming the disappearance of ≡ C─H peaks along with C-H, C=C and C ≡N bond destabilization following degradation. Energy-dispersive X-ray (EDX) analyzers of the native and decomposed e-polymer samples revealed a considerable loss in elemental weight % of oxygen by 8.4% and silica by 0.5%. Magnesium, aluminium and chlorine which were previously present in the untreated sample, were also removed after treatment by the bacterial action. When seeds of Vigna radiata were screened using treated soil in the presence of both e-waste and the chosen potent bacterial strain, it was also discovered that there was reduced toxicity in terms of improved germination and growth metrics as a phytotoxicity criterion.


Subject(s)
Acrylonitrile , Electronic Waste , Styrene , Plastics , Acrylonitrile/chemistry , Butadienes/chemistry , Biodegradation, Environmental , Soil , Electronic Waste/analysis , Polymers , Bacteria
3.
3 Biotech ; 12(9): 218, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35965658

ABSTRACT

The discharge of potentially toxic petroleum hydrocarbons into the environment has been a matter of concern, as these organic pollutants accumulate in many ecosystems due to their hydrophobicity and low bioavailability. Petroleum hydrocarbons are neurotoxic and carcinogenic organic pollutants, extremely harmful to human and environmental health. Traditional treatment methods for removing hydrocarbons from polluted areas, including various mechanical and chemical strategies, are ineffective and costly. However, many indigenous microorganisms in soil and water can utilise hydrocarbon compounds as sources of carbon and energy and hence, can be employed to degrade hydrocarbon contaminants. Therefore, bioremediation using bacteria that degrade petroleum hydrocarbons is commonly viewed as an environmentally acceptable and effective method. The efficacy of bioremediation can be boosted further by using potential biosurfactant-producing microorganisms, as biosurfactants reduce surface tension, promote emulsification and micelle formation, making hydrocarbons bio-available for microbial breakdown. Further, introducing nanoparticles can improve the solubility of hydrophobic hydrocarbons as well as microbial synthesis of biosurfactants, hence establishing a favourable environment for microbial breakdown of these chemicals. The review provides insights into the role of microbes in the bioremediation of soils contaminated with petroleum hydrocarbons and emphasises the significance of biosurfactants and potential biosurfactant-producing bacteria. The review partly focusses on how nanotechnology is being employed in different critical bioremediation processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...