Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Cancer ; 152: 78-89, 2021 07.
Article in English | MEDLINE | ID: mdl-34090143

ABSTRACT

AIM: The aim of the study was to assess the prognostic performance of a 6-gene molecular score (OncoMasTR Molecular Score [OMm]) and a composite risk score (OncoMasTR Risk Score [OM]) and to conduct a within-patient comparison against four routinely used molecular and clinicopathological risk assessment tools: Oncotype DX Recurrence Score, Ki67, Nottingham Prognostic Index and Clinical Risk Category, based on the modified Adjuvant! Online definition and three risk factors: patient age, tumour size and grade. METHODS: Biospecimens and clinicopathological information for 404 Irish women also previously enrolled in the Trial Assigning Individualized Options for Treatment [Rx] were provided by 11 participating hospitals, as the primary objective of an independent translational study. Gene expression measured via RT-qPCR was used to calculate OMm and OM. The prognostic value for distant recurrence-free survival (DRFS) and invasive disease-free survival (IDFS) was assessed using Cox proportional hazards models and Kaplan-Meier analysis. All statistical tests were two-sided ones. RESULTS: OMm and OM (both with likelihood ratio statistic [LRS] P < 0.001; C indexes = 0.84 and 0.85, respectively) were more prognostic for DRFS and provided significant additional prognostic information to all other assessment tools/factors assessed (all LRS P ≤ 0.002). In addition, the OM correctly classified more patients with distant recurrences (DRs) into the high-risk category than other risk classification tools. Similar results were observed for IDFS. DISCUSSION: Both OncoMasTR scores were significantly prognostic for DRFS and IDFS and provided additional prognostic information to the molecular and clinicopathological risk factors/tools assessed. OM was also the most accurate risk classification tool for identifying DR. A concise 6-gene signature with superior risk stratification was shown to increase prognosis reliability, which may help clinicians optimise treatment decisions.


Subject(s)
Antineoplastic Agents, Hormonal/therapeutic use , Biomarkers, Tumor/genetics , Breast Neoplasms/mortality , Breast/pathology , Neoplasm Recurrence, Local/epidemiology , Adult , Aged , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Disease-Free Survival , Female , Gene Expression Profiling , Genetic Testing/methods , Humans , Kaplan-Meier Estimate , Middle Aged , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Observational Studies as Topic , Prognosis , Prospective Studies , Receptor, ErbB-2/analysis , Receptor, ErbB-2/metabolism , Receptors, Estrogen/analysis , Receptors, Estrogen/metabolism , Receptors, Progesterone/analysis , Receptors, Progesterone/metabolism , Reproducibility of Results , Risk Assessment/methods , Risk Assessment/statistics & numerical data , Young Adult
2.
Cell Tissue Res ; 368(1): 47-59, 2017 04.
Article in English | MEDLINE | ID: mdl-27770257

ABSTRACT

Chondrogenesis in vivo is precisely controlled in time and space. The entire limb skeleton forms from cells at the core of the early limb bud that condense and undergo chondrogenic differentiation. Whether they form stable cartilage at the articular surface of the joint or transient cartilage that progresses to hypertrophy as endochondral bone, replacing the cartilage template of the skeletal rudiment, is spatially controlled over several days in the embryo. Here, we follow the differentiation of cells taken from the early limb bud (embryonic day 11.5), grown in high-density micromass culture and show that a self-organising pattern of evenly spaced cartilage nodules occurs spontaneously in growth medium. Although chondrogenesis is enhanced by addition of BMP6 to the medium, the spatial pattern of nodule formation is disrupted. We show rapid progression of the entire nodule to hypertrophy in culture and therefore loss of the local signals required to direct formation of stable cartilage. Dynamic hydrostatic pressure, which we have previously predicted to be a feature of the forming embryonic joint region, had a stabilising effect on chondrogenesis, reducing expression of hypertrophic marker genes. This demonstrates the use of micromass culture as a relatively simple assay to compare the effect of both biophysical and molecular signals on spatial and temporal control of chondrogenesis that could be used to examine the response of different types of progenitor cell, both adult- and embryo-derived.


Subject(s)
Cell Culture Techniques/methods , Chondrogenesis , Hydrostatic Pressure , Limb Buds/cytology , Limb Buds/embryology , Animals , Cell Differentiation/genetics , Cells, Cultured , Chondrogenesis/genetics , Gene Expression Regulation, Developmental , Hypertrophy , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...