Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Funct Plant Biol ; 50(4): 267-276, 2023 04.
Article in English | MEDLINE | ID: mdl-36624487

ABSTRACT

The physiological mechanisms of shade tolerance and trait plasticity variations under shade remain poorly understood in rice (Oryza sativa L.). Twenty-five genotypes of rice were evaluated under open and shade conditions. Various parameters to identify variations in the plasticity of these traits in growth irradiance were measured. We found wide variations in specific leaf weight (SLW) and net assimilation rate measured at 400µmolm-2 s-1 photosynthetic photon flux density (PPFD; referred to as A 400 ) among the genotypes. Under shade, tolerant genotypes maintained a high rate of net photosynthesis by limiting specific leaf weight accompanied by increased intercellular CO2 concentration (C i ) compared with open-grown plants. On average, net photosynthesis was enhanced by 20% under shade, with a range of 2-30%. Increased accumulation of biomass under shade was observed, but it showed no correlation with photosynthetic plasticity. Chlorophyll a /b ratio also showed no association with photosynthetic rate and yield. Analysis of variance showed that 11%, 16%, and 37% of the total variance of A 400 , SLW, and C i were explained due to differences in growth irradiance. SLW and A 400 plasticity in growth irradiance was associated with yield loss alleviation with R 2 values of 0.37 and 0.16, respectively. Biomass accumulation was associated with yield loss alleviation under shade, but no correlation was observed between A 400 and leaf-N concentration. Thus, limiting specific leaf weight accompanied by increased C i rather than leaf nitrogen concentration might have allowed rice genotypes to maintain a high net photosynthesis rate per unit leaf area and high yield under shade.


Subject(s)
Oryza , Oryza/genetics , Chlorophyll A , Photosynthesis , Light , Genotype
2.
J Genet ; 992020.
Article in English | MEDLINE | ID: mdl-33361642

ABSTRACT

The yield potentiality of kharif rice is not completely used even under well-irrigated agro-ecosystem, mainly due to low irradiance by overcast cloud throughout the growing season in eastern India. We observed more than 50% yield reduction compared to the performance of 100 high-yield genotypes for consecutive three years both under open and 30-35% reduced light intensity, mainly by 34%, 25% and 12% reduction of panicle number, grains per panicle and test weight. As per the analysis of variance, genotypic variance explained 39% of the total yield-variation under shade with 58% heritability. Overall, the maintenance of equal panicle per plant in both open and shade has the highest association with shade tolerance. Purnendu, Sashi and Pantdhan19 showed less than 28% yield-reduction by maintenance or even by increasing grain numbers under shade and test weight. On the other hand, maintenance of an equal number of panicle under both situations was the key to the tolerance of Bhasamanik, Sasarang, Rudra and Swarnaprabha. As compared to open, we noticed the improvement of chlorophyll a and b under shade but saw a poor correlation with the shade tolerance index. Comparing the net photosynthesis rate (Pn) in eight genotypes, we found the best tolerant line ranked last with least Pn at low light intensity (400 µmol m-2 s-1). We also identified diverse parental combinations between newly identified shade tolerant and abiotic stress tolerant high-yielding rice lines following diversity analysis using 54 simple-sequence repeats. Thus, the selected tolerant lines from a large set of genotypes with different adjustment ability to keep up high yield under low light intensity can be used for physiological, molecular analysis as well as pyramiding of traits.


Subject(s)
Adaptation, Physiological/genetics , Genetic Variation , Microsatellite Repeats/genetics , Oryza/genetics , Stress, Physiological/genetics , Adaptation, Physiological/radiation effects , Chlorophyll A/metabolism , Chromosome Mapping , Chromosomes, Plant/genetics , Ecosystem , Genotype , India , Light , Oryza/classification , Oryza/metabolism , Phenotype , Photosynthesis/genetics , Photosynthesis/radiation effects , Plant Leaves/genetics , Plant Leaves/metabolism , Quantitative Trait Loci/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...