Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 15(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36556624

ABSTRACT

Radionuclide-contaminated water is carcinogenic and poses numerous severe health risks and environmental dangers. The activated carbon (AC)-based adsorption technique has great potential for treating radionuclide-contaminated water due to its simple design, high efficiency, wide pH range, quickness, low cost and environmental friendliness. This critical review first provides a brief overview of the concerned radionuclides with their associated health hazards as well as different removal techniques and their efficacy of removing them. Following this overview, this study summarizes the surface characteristics and adsorption capabilities of AC derived from different biomass precursors. It compares the adsorption performance of AC to other adsorbents, such as zeolite, graphene, carbon nano-tubes and metal-organic frameworks. Furthermore, this study highlights the different factors that influence the physical characteristics of AC and adsorption capacity, including contact time, solution pH, initial concentration of radionuclides, the initial dosage of the adsorbent, and adsorption temperature. The theoretical models of adsorption isotherm and kinetics, along with their fitting parameter values for AC/radionuclide pairs, are also reviewed. Finally, the modification procedures of pristine AC, factors determining AC characteristics and the impact of modifying agents on the adsorption ability of AC are elucidated in this study; therefore, further research and development can be promoted for designing a highly efficient and practical adsorption-based radionuclide removal system.

2.
Micromachines (Basel) ; 13(8)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-36014170

ABSTRACT

Copper zinc tin sulfide (CZTS) can be considered an important absorber layer material for utilization in thin film solar cell devices because of its non-toxic, earth abundance, and cost-effective properties. In this study, the effect of molybdenum disulfide (MoS2) as a buffer layer on the different parameters of CZTS-based solar cell devices was explored to design a highly efficient solar cell. While graphene is considered a transparent conducting oxide (TCO) layer for the superior quantum efficiency of CZTS thin film solar cells, MoS2 acts as a hole transport layer to offer electron-hole pair separation and an electron blocking layer to prevent recombination at the graphene/CZTS interface. This study proposed and analyzed a competent and economic CZTS solar cell structure (graphene/MoS2/CZTS/Ni) with MoS2 and graphene as the buffer and TCO layers, respectively, using the Solar Cell Capacitance Simulator (SCAPS)-1D. The proposed structure exhibited the following enhanced solar cell performance parameters: open-circuit voltage-0.8521 V, short-circuit current-25.3 mA cm-2, fill factor-84.76%, and efficiency-18.27%.

3.
Environ Pollut ; 309: 119765, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35870534

ABSTRACT

Mangroves play a vital role in protecting the coastal community from the climate change effect and in the restoration of the coastal ecosystem. This research has been designed to determine the spatial and seasonal changes of potentially toxic elements' (PTEs) concentration in sediments and their potential source contribution among the different human-driven processes in Sundarbans, Bangladesh. Different pollution evaluation indices, random forest (RF) model, conditional inference tree (CIT), self-organizing map (SOM), geographical information system (GIS), and principal component analysis (PCA) were used for the interpretation of sources and risk assessment of PTEs. The mean concentration of PTEs both in winter and monsoon seasons has fallen below the threshold effect level but exceeded the rare effect level of marine sediments quality standards. Results showed that the PTEs were significantly enriched (EF > 1.00 < 70.00) in sediments, whereas the Cd enrichment (7.00% samples) was very alarming (EF = 60-70). Except for Zn and Cd, other PTEs were enriched in 30-60% samples. The highest geoaccumulation and contamination factors for Cd were observed in 46-72% of samples. The ecological risk (ER) factors showed similar results where Cd showed strong to very strong factors (ER = 110-2218) in 80% of samples. The CIT explained the natural/geogenic and anthropogenic sources of pollution, where the higher CIT values for Cd indicated industrial, aquaculture, and coal-based thermal powerplant. The RF model provided that shrimp firms, power plants, industry, and seaport were recognized as the influential sources for Zn, Pb, Cr, Cd, and As in sediments. Though Pb and As were found as the most significant pollutants, Cd was identified as a severe threat to ecology and public health. Based on CIT, RF, SOM and PCA the order of PTEs in mangroves sediment were:industrial/urban > aquaculture/shrimpfirm > powerplant > seaportoperation > tourism > geogenic/natural. The present study will help the policymakers for effective and sustainable management of the mangrove ecosystem.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Bangladesh , Cadmium/analysis , China , Ecosystem , Environmental Monitoring/methods , Geographic Information Systems , Geologic Sediments , Humans , Lead/analysis , Metals, Heavy/analysis , Risk Assessment/methods , Seasons , Water Pollutants, Chemical/analysis
4.
Heliyon ; 8(12): e12187, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36590535

ABSTRACT

Scholars studied chemostat model with variable yield coefficient and a growth rate in Monod expression for the existence of natural oscillations in a bioreactor. This article explores dynamical properties of a similar simple model, analytically and numerically, in which the growth rate is a modified Haldane expression. Study includes determination of analytic conditions for existence of steady-state washout and no washout solutions, optimization of the performance of the bioreactor when no washout solution occurs, stability of the optimized steady state solution, and the ranges of the parameter values for which natural oscillations (Hopf Bifurcation) take place. Investigation shows that it is possible to gain natural oscillations for much smaller values of the substrate concentration compared to Monod-based earlier works.

5.
Heliyon ; 7(10): e08185, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34761129

ABSTRACT

Spirulina platensis has been considered a promising source of food supplement to combat malnutrition worldwide. Numerous investigations have stated its immune activity, ability to absorb CO2 during the growth period, and antioxidant potential. Well-known theoretical biomass kinetic model sheds are capable of qualitative analysis of the fast microalgae growth. In this regard, we considered eight popular biomass models: Monod, Haldane, Andrews & Noack, Teissier, Hinshelwood, Yano & Koga, Webb and, Aiba model comprising analytical investigation within the numerical simulation. Besides, in this study, we establish a new mathematical biomass growth model by merging the well-known Hinshelwood and Yano & Koga models. We explored the most suitable Spirulina growth model to minimize the overstated and understated growth trends in the assorted eight biomass kinetic models. Our findings show microalgae biomass growth and substrate diminishes along with time, and these results were compared with available experimental data. Results present a high value of R2(0.9862), a low value of RSS (0.0813), AIC (-9.7277), and BIC (-8.2148) implied significantly fitted with the investigated data for the growth of Spirulina platensis compared with popular eight studied models.

6.
Adv Colloid Interface Sci ; 294: 102468, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34198212

ABSTRACT

The dynamic uptake of adsorbate onto the porous adsorbent plays a crucial role in determining the performance of the adsorption-based cooling system. Therefore, it is imperative to know the kinetics parameters of an adsorbate - adsorbent pair to design a system to be operated at variable working conditions. The kinetics models of adsorption, used to simulate the adsorption rate of different pairs, are derived and presented in this paper. Besides, the limitations and advantages of the models are also mentioned. Moreover, the dynamic performance of different adsorption pairs is analyzed, and the values of kinetics parameters, determined through experimental procedures and fitting of kinetics models, are also summarized. It is opined that during the initial unsaturated condition of adsorption, the semi-infinite model can be preferred to determine the diffusion time constant. The modification of different models, e.g., Langmuir and linear driving force models, can significantly overcome the drawbacks of the models, as shown by several researchers. However, research may be carried out to investigate different models' fitting errors from a statistical perspective. Furthermore, to evaluate the dynamic performance of different adsorbates, a lot of research needs to be done, specifically, on the adsorption of the newly developed environment-friendly refrigerants, onto the promising composite adsorbents possessing high thermal conductivity and significantly improved adsorption uptakes.

7.
Environ Sci Pollut Res Int ; 28(40): 56535-56551, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34057628

ABSTRACT

The effective removal of strontium from polluted water is an emerging issue worldwide, especially in Japan, after the destruction of Fukushima's Daiichi Nuclear Power Plant. In the strontium removal process, statistical optimization of associated factors is needed to reduce the quantity of chemicals and the number of experimental trials. In this study, response surface methodology based on the central composite design was employed for assessing the influence of different factors and their interaction effects on the efficiency of strontium removal. We have considered nanoscale zero-valent iron-zeolite (nZVI-Z) and nano-Fe/Cu zeolite (nFe/Cu-Z) as adsorbents for the effective removal of strontium. The results suggested that the studied three factors such as pH, contact time, and concentration are positively related to the adsorption of strontium. That is, the maximum strontium removal occurred at pH, initial concentration, and contact time of 12, 200 mg L-1, and 30 min, respectively. The experimental maximum strontium adsorption capacity of nZVI-Z and nFe/Cu-Z adsorbents is 32.5 mg/g and 34 mg/g, respectively. The present study also showed that the most statistically significant potential contributor was initial concentration, followed by contact time in the removal process. The study indicated that the interaction effect between contact time and initial concentration was statistically important, suggesting the need for a multi-mechanism technique in the removal phase of strontium. Tόth, Langmuir, Dubinin-Astakhov (D-A), Freundlich, and Hill isotherm models were also fitted with the experimental strontium adsorption data, in which the Tόth model fitted best compared to the other models based on the RMSD and R2.


Subject(s)
Nanocomposites , Water Pollutants, Chemical , Zeolites , Adsorption , Hydrogen-Ion Concentration , Kinetics , Strontium , Water , Water Pollutants, Chemical/analysis
8.
Environ Sci Pollut Res Int ; 28(17): 22105-22122, 2021 May.
Article in English | MEDLINE | ID: mdl-33410081

ABSTRACT

This study was conducted to assess the accumulation and sources of harmful metals and associated public health risk from the usage of underground mine water of Barapukuria coal mine in Bangladesh, keeping in mind the optimum reuse. Thirty underground mine water samples had been analyzed for assessing temperature, pH, EC, TC, DO, BOD, COD, Ca, K, S, Ti, Mn, V, Fe, Co, Ni, Cu, Zn, Br, Rb, Sr, and Pb. Numerous pollution evaluation and health risk assessment indices along with multivariate statistical tools were employed in this study to apprise the pollution scenario, controlling factors, and probable health risk. The chronic or persistent health risk of metals via oral and dermal exposure of adults and children was determined using the hazard quotient (HQ) and hazard index (HI). The results showed that the content of physicochemical parameters and potentially harmful elements in water samples was many folds higher than the national and international standards. The results of pollution evaluation indices indicate that coal seam-leached mine water is highly concentrated by potentially harmful metals and not suitable for drinking, agriculture, and aquatic lives. The correlation coefficients and multivariate analysis illustrate both the geological and anthropogenic factors controlling the variability of metals in mine water. Results of HQoral value suggest that V, Co, and Pb are significant health risk for adults and Mn, V, Co, Cu, and Pb are for children. Vanadium is found potential for dermal effects, and HIdermal value directs 33%, and 70% samples exceed the safe limit for adults and children, respectively. The HI value suggests that oral exposure to harmful metals creates more harm than dermal absorption, and children are more vulnerable than adults. It is anticipated that the outcomes of this study would deliver expedient insights to initiate necessary steps to minimize the public health risk by applying appropriate environmental protocols.


Subject(s)
Metals, Heavy , Adult , Bangladesh , Child , Coal/analysis , Environmental Monitoring , Humans , Metals, Heavy/analysis , Public Health , Risk Assessment , Water
9.
Environ Sci Pollut Res Int ; 28(3): 2934-2947, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32897472

ABSTRACT

The Kyoto Protocol has stipulated array of national policies to combat the climate change. To tackle the global warming, governments embraced Paris Agreement and Kigali Amendment which deal with the reduction of greenhouse gas emission. For example, the European F-gas regulation and the Japan METI now enforce refrigerants below 150 GWP for automobile industry and below 750 GWP for the residential air-conditioning applications. To invent a perfect refrigerant that meets performance requirement, environmental requirements, and safety standards is considered extremely difficult. On the other hand, some existing refrigerants exhibit excellent performance with safe operation but record high-GWP while refrigerants such as R1234yf and R744 possess almost 0 GWP. Thus, these refrigerant blends might serve as urgent solutions with minimum performance compromise. This paper evaluates the performance of binary and ternary blends using several promising refrigerants. Exploiting the excellent performance of R32 as the base refrigerant, R1123, R1234yf, R1234ze(E), and R744 are utilized in the blends. The performance indicators employed here are (i) GWP, (ii) temperature glide, (iii) volumetric capacity, and (iv) coefficient of performance. The advantages to reduce the irreversible heat loss by glide matching and energy saving potential for the blends are also discussed. Results showed that some refrigerant blends considering GWP 200 and 300 could successfully replace the widely used R410A in a residential air conditioner. Thermodynamic cycle and performance of zeotropic blend.


Subject(s)
Air Conditioning , Global Warming , Japan , Paris , Rwanda , Thermodynamics
10.
Chemosphere ; 263: 128339, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33297265

ABSTRACT

Rapid urbanization and industrial growth have triggered heavy metal contamination in agricultural soil in Dhaka, which is a serious concern for ecological risk and public health issues. In this study, fifty-four soil samples from agricultural lands of Dhaka had been analyzed for assessing accumulation, spatial enrichment, ecological risk and sources apportionment of heavy metals using a combined approach of self-organizing map (SOM), positive matrix factorization (PMF), geographical information system (GIS), and enrichment factor (EF). The results of the enrichment factor, geoaccumulation index and contamination factor index showed that more than 90% of the soil samples were polluted by higher levels of Cr and Cd. The mean pollution load index (PLI) results demonstrated that about 73% of soil samples were moderately polluted by heavy metals. Based on SOM and PMF analysis, four potential sources of heavy metals were found in this study area: (i) agrochemical and sewage irrigation (Cd-As); (ii) combined effect of agriculture, industrial and natural sources (Mn, Co, Ni and Zn); (iii) atmospheric deposition and industrial emission (As-Pb); (iv) chemical and leather tanning industries (Cr). The ecological risk index demonstrated that in terms of Cd content, about 75% of soil samples were moderate to high risk, and 20% were moderate to considerable ecological risk, which was the serious environmental, ecological, and public health concern. The spatial projection of ecological risk values showed that the southern part of Dhaka (Keraniganj Upazila) is a high ecological risk in terms of heavy metal pollution. These risk maps in agricultural soils may play a vital role in reducing pollution sources; so that zonal pollution control, as well as ecological protection, may be achieved in this resource-based agricultural land.


Subject(s)
Metals, Heavy , Soil Pollutants , Agriculture , Bangladesh , China , Environmental Monitoring , Geographic Information Systems , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis
11.
Environ Sci Pollut Res Int ; 28(10): 12918-12931, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33097999

ABSTRACT

Statistical optimization of performance determining factors is essential for the development of a cesium removal system from aqueous solutions. Therefore, factorial experimental design and multiple regression techniques were employed to assess the primary and interaction effects of the pH, initial concentration, and contact time in the cesium removal process using nanoscale zero-valent iron-zeolite (nZVI-Z) and nano-Fe/Cu-zeolite (nFe/Cu-Z) as an adsorbent. The optimum region of cesium removal was identified by constructing a contour plot. The study revealed that initial concentration was the most significant factor followed by contact time. The study also suggested that maximum cesium removal occurred at pH, initial concentration, and contact time of 6, 200 mg/L, and 30 min, respectively. Moreover, the statistically significant interaction effect was observed between contact time and initial concentration. The experimental data were also fitted with Tόth, Langmuir, Dubinin-Astakhov (D-A), Freundlich, and Hill models and found that the Tόth model fitted better compared with the other four models based on Akaike information criterion (AIC) and root-mean-square deviation (RMSD). The findings of this paper can undoubtedly contribute to constructing the optimum statistical process of removing hazardous pollutants from the water, which significantly impacts on human health and the environment. Graphical abstract.


Subject(s)
Nanoparticles , Water Pollutants, Chemical , Zeolites , Adsorption , Cesium , Humans , Hydrogen-Ion Concentration , Iron , Kinetics , Solutions , Water , Water Pollutants, Chemical/analysis
12.
Nanotechnology ; 31(23): 235402, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32097901

ABSTRACT

Multi-walled carbon nanotubes (MWCNTs) are a contemporary class of nanoparticles that have a prominent thermal, electrical and mechanical properties. There have been numerous studies on the enhancement of thermophysical properties of nanofluids. However, there is only limited research on thermal and stability analysis of MWCNT nanofluids with various kinds of solvents or base fluids, namely propylene glycol, ethanol, ethylene glycol, polyethylene glycol, methanol and water. This paper reports the enhancement of thermophysical properties and stability of MWCNTs with six different base fluids in the presence of sodium dodecyl benzene sulfonate surfactant with a mass concentration of 0.5 wt%. Thermal and dispersion stabilities were determined using a thermogravimetric analyzer (TGA) and Zeta potential, along with a visual inspection method to evaluate the agglomeration or sedimentation of MWCNT nanoparticles over a period of one month. Ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy were utilized to identify the molecular components and light absorption of the formulated nanofluids at their maximum wavenumber (4500 cm-1) and wavelength (800 nm). In addition, thermophysical properties such as thermal conductivity, specific heat capacity, viscosity and density with a peak temperature of 200 °C were also experimentally evaluated. The TGA results illustrated that MWCNT/ethylene glycol nanofluid achieved maximum thermal stability at 140 °C and it revealed a maximum zeta potential value of -61.8 mV. Thus, ethylene glycol solution was found to be the best base liquid to homogenize with MWCNTs for acquiring an enhanced thermophysical property and a long-term stability.

13.
Chemosphere ; 197: 502-512, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29407812

ABSTRACT

Nanoscale zero-valent iron (nZVI) is a versatile treatment reagent that should be utilized in an effective application for nitrate remediation in water. For this purpose, a laboratory-scale continuous-flow system (LSCFS) was developed to evaluate nZVI performance in removal of nitrate in different contaminated-water bodies. The equipment design (reactor, settler, and polisher) and operational parameters of the LSCFS were determined based on nZVI characterization and nitrate reduction kinetics. Ten experimental runs were conducted at different dosages (6, 10 and 20 g) of nZVI-based reagents (nZVI, bimetallic nZVI-Cu, CuCl2-added nZVI). Effluent concentrations of nitrogen and iron compounds were measured, and pH and ORP values were monitored. The major role exhibited by the recirculation process of unreacted nZVI from the settler to the reactor succeeded in achieving overall nitrate removal efficiency (RE) of >90%. The similar performance of both nZVI and copper-ions-modified nZVI in contaminated distilled water was an indication of LSCFS reliability in completely utilizing iron nanoparticles. In case of treating contaminated river water and simulated groundwater, the nitrate reduction process was sensitive towards the presence of interfering substances that dropped the overall RE drastically. However, the addition of copper ions during the treatment counteracted the retardation effect and greatly enhanced the nitrate RE.


Subject(s)
Metal Nanoparticles/chemistry , Nitrates/chemistry , Water Pollutants, Chemical/chemistry , Copper , Groundwater/chemistry , Iron/chemistry , Models, Chemical , Nitrogen , Nitrogen Oxides , Reproducibility of Results , Waste Disposal, Fluid , Water , Water Pollutants, Chemical/analysis , Water Pollution , Water Purification
14.
Phys Chem Chem Phys ; 13(27): 12559-70, 2011 Jul 21.
Article in English | MEDLINE | ID: mdl-21670804

ABSTRACT

We propose a new method for evaluating the adsorbed phase volume during physisorption of several gases on activated carbon specimens. We treat the adsorbed phase as another equilibrium phase which satisfies the Gibbs equation and hence assume that the law of rectilinear diameters is applicable. Since invariably the bulk gas phase densities are known along measured isotherms, the constants of the adsorbed phase volume can be regressed from the experimental data. We take the Dubinin-Astakhov isotherm as the model for verifying our hypothesis since it is one of the few equations that accounts for adsorbed phase volume changes. In addition, the pseudo-saturation pressure in the supercritical region is calculated by letting the index of the temperature term in Dubinin's equation to be temperature dependent. Based on over 50 combinations of activated carbons and adsorbates (nitrogen, oxygen, argon, carbon dioxide, hydrocarbons and halocarbon refrigerants) it is observed that the proposed changes fit experimental data quite well.

15.
Langmuir ; 25(13): 7359-67, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19469548

ABSTRACT

The Henry coefficients of a single component adsorbent + adsorbate system are calculated from experimentally measured adsorption isotherm data, from which the heat of adsorption at zero coverage is evaluated. The first part of the papers relates to the development of thermodynamic property surfaces for a single-component adsorbent+adsorbate system (Chakraborty, A.; Saha, B. B.; Ng, K. C.; Koyama, S.; Srinivasan, K. Langmuir 2009, 25, 2204). A thermodynamic framework is presented to capture the relationship between the specific surface area (Ai) and the energy factor, and the surface structural and the surface energy heterogeneity distribution factors are analyzed. Using the outlined approach, the maximum possible amount of adsorbate uptake has been evaluated and compared with experimental data. It is found that the adsorbents with higher specific surface areas tend to possess lower heat of adsorption (DeltaH degrees) at the Henry regime. In this paper, we have established the definitive relation between Ai and DeltaH degrees for (i) carbonaceous materials, metal organic frameworks (MOFs), carbon nanotubes, zeolites+hydrogen, and (ii) activated carbons+methane systems. The proposed theoretical framework of Ai and DeltaH degrees provides valuable guides for researchers in developing advanced porous adsorbents for methane and hydrogen uptake.

16.
Langmuir ; 25(4): 2204-11, 2009 Feb 17.
Article in English | MEDLINE | ID: mdl-19140706

ABSTRACT

Thermodynamic property surfaces for a single-component adsorbent+adsorbate system are derived and developed from the viewpoint of classical thermodynamics, thermodynamic requirements of chemical equilibrium, Gibbs law, and Maxwell relations. They enable us to compute the entropy and enthalpy of the adsorbed phase, the isosteric heat of adsorption, specific heat capacity, and the adsorbed phase volume thoroughly. These equations are very simple and easy to handle for calculating the energetic performances of any adsorption system. We have shown here that the derived thermodynamic formulations fill up the information gap with respect to the state of adsorbed phase to dispel the confusion as to what is the actual state of the adsorbed phase. We have also discussed and established the temperature-entropy diagrams of (i) CaCl2-in-silica gel+water system for cooling applications, and (ii) activated carbon (Maxsorb III)+methane system for gas storage.

SELECTION OF CITATIONS
SEARCH DETAIL
...