Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Microbiology (Reading) ; 170(1)2024 01.
Article in English | MEDLINE | ID: mdl-38180462

ABSTRACT

The emergence and spread of antibiotic-resistant bacterial pathogens are a critical public health concern across the globe. Mobile genetic elements (MGEs) play an important role in the horizontal acquisition of antimicrobial resistance genes (ARGs) in bacteria. In this study, we have decoded the whole genome sequences of multidrug-resistant Vibrio cholerae clinical isolates carrying the ARG-linked SXT, an integrative and conjugative element, in their large chromosomes. As in others, the SXT element has been found integrated into the 5'-end of the prfC gene (which encodes peptide chain release factor 3 involved in translational regulation) on the large chromosome of V. cholerae non-O1/non-O139 strains. Further, we demonstrate the functionality of SXT-linked floR and strAB genes, which confer resistance to chloramphenicol and streptomycin, respectively. The floR gene-encoded protein FloR belongs to the major facilitator superfamily efflux transporter containing 12 transmembrane domains (TMDs). Deletion analysis confirmed that even a single TMD of FloR is critical for the export function of chloramphenicol. The floR gene has two putative promoters, P1 and P2. Sequential deletions reveal that P2 is responsible for the expression of the floR. Deletion analysis of the N- and/or C-terminal coding regions of strA established their importance for conferring resistance against streptomycin. Interestingly, qPCR analysis of the floR and strA genes indicated that both of the genes are constitutively expressed in V. cholerae cells. Further, whole genome-based global phylogeography confirmed the presence of the integrative and conjugative element SXT in non-O1/non-O139 strains despite being non-multidrug resistant by lacking antimicrobial resistance (AMR) gene cassettes, which needs monitoring.


Subject(s)
Vibrio cholerae non-O1 , Anti-Bacterial Agents/pharmacology , Genomics , Chloramphenicol , Streptomycin , Drug Resistance, Microbial
2.
Angew Chem Int Ed Engl ; 62(47): e202310884, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37740943

ABSTRACT

This study uses a rapid tandem mass-spectrometry method to determine water content in complex organic solutions. Emphasis is placed on trace-water analysis by a fast and accurate alternative to the Karl-Fischer method. In this new method, water is captured by a charge-labeled molecular probe. Water binds strongly with high specificity to the strongly electrophilic aldehyde site in a charge-labelled molecule (N-methylpyridinium); competitive binding by other analytes is effectively discriminated against in the mass-measurement step. Quantitative determinations are made over a wide concentration range, 0.001 % (10 ppm) to 99 %, with better than 10 % relative standard deviation, along with short (1 min) analysis times using small sample volumes (several µL). Applications include water measurement in simple organic solvents, for example, deuterated solvents, as well as in complex mixtures, for example, organic reaction mixtures. Additionally, this method allows for water monitoring in levitated droplets. Mechanistic investigations into the impact of water on important chemical processes in organic synthesis and environmental science are reported.

3.
Arch Microbiol ; 204(8): 498, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35849211

ABSTRACT

Polyurethane (PUR) is a soil and aquatic contaminant throughout the world. Towards bioremediation, in a previous study, a soil bacterium, Pseudomonas sp. AKS31, capable of efficiently degrading PUR was isolated. Polyurethanase (PURase) enzyme is capable of cleaving the ester bond of PUR and is considered as a key regulator of PUR biodegradation. Hence, for a high yield, easy purification, and further characterization, the aim of this study was to clone and overexpress the PURase gene of this isolate. The current study also investigated structural aspects of this enzyme through predictive bioinformatics analyses. In this context, the PURase gene of the isolate was cloned and expressed in E. coli using pET28(a)+ vector. The obtained recombinant protein was found insoluble. Therefore, first, the protein was made soluble with urea and purified using nickel-NTA beads. The purified enzyme exhibited substantial activities when tested on the LA-PUR plate. Bioinformatics-based analysis of the protein revealed the presence of a lipase serine active site and indicated that this PURase belongs to the Family 1.3 lipase. Hence, the present study shows that active PURase can be produced in large quantities using a prokaryotic expression system and thus, provides an effective strategy for in-vitro PUR-degradation.


Subject(s)
Escherichia coli , Pseudomonas , Biodegradation, Environmental , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Lipase/metabolism , Polyurethanes/metabolism , Pseudomonas/metabolism , Soil
4.
Water Sci Technol ; 84(10-11): 2718-2736, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34850689

ABSTRACT

East Kolkata Wetlands (EKW) is designated as International Ramsar site and are the hotspot for large-scale wastewater aquaculture practices. However, the continued surveillance of physicochemical properties of water and application of an eco-friendly approach are essential to ensure safe aquaculture practices. In the present study, we assessed the seasonal variation in physicochemical parameters of water across EKW and investigated the role of nitrifying bacteria as probiotics. We statistically analyzed various physicochemical properties of water samples from EKW. Results of the statistical analysis indicated a significant variation in all the physicochemical parameters across the selected water bodies of EKW (p < 0.01). We isolated and enumerated Nitrosomonas sp. and Nitrobacter sp. and assessed their ability to degrade trichloroethylene (TCE). The role of Nitrosomonas sp. and Nitrobacter sp. were further investigated and established through a small-scale experiment. Two microbial isolates, NSW3 and NBW2, displayed superior TCE degradation ability at pH 5, and the application of these strains as probiotics were found to improve the quality of water and survival rate of fishes in the treated experimental tanks. Our findings suggest that the application of the above mixed bacterial cultures in aquaculture could be an effective and environment-friendly approach for safe and productive aquaculture operations.


Subject(s)
Water Quality , Wetlands , Bacteria , Biodegradation, Environmental , Nitrosomonas
5.
J Xenobiot ; 11(4): 197-214, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34940513

ABSTRACT

With the advancements of science, antibiotics have emerged as an amazing gift to the human and animal healthcare sectors for the treatment of bacterial infections and other diseases. However, the evolution of new bacterial strains, along with excessive use and reckless consumption of antibiotics have led to the unfolding of antibiotic resistances to an excessive level. Multidrug resistance is a potential threat worldwide, and is escalating at an extremely high rate. Information related to drug resistance, and its regulation and control are still very little. To interpret the onset of antibiotic resistances, investigation on molecular analysis of resistance genes, their distribution and mechanisms are urgently required. Fine-tuned research and resistance profile regarding ESKAPE pathogen is also necessary along with other multidrug resistant bacteria. In the present scenario, the interaction of bacterial infections with SARS-CoV-2 is also crucial. Tracking and in-silico analysis of various resistance mechanisms or gene/s are crucial for overcoming the problem, and thus, the maintenance of relevant databases and wise use of antibiotics should be promoted. Creating awareness of this critical situation among individuals at every level is important to strengthen the fight against this fast-growing calamity. The review aimed to provide detailed information on antibiotic resistance, its regulatory molecular mechanisms responsible for the resistance, and other relevant information. In this article, we tried to focus on the correlation between antimicrobial resistance and the COVID-19 pandemic. This study will help in developing new interventions, potential approaches, and strategies to handle the complexity of antibiotic resistance and prevent the incidences of life-threatening infections.

6.
J Chem Phys ; 155(4): 044308, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34340374

ABSTRACT

In this study, the quantum chemical properties, nonbonding interactions, and spectroscopic insights of a wide variety of choline chloride (ChCl)-based deep eutectic solvents were investigated employing molecular dynamics (MD), density functional theory, and spectroscopic analyses. Nine experimentally reported ChCl-based deep eutectic solvents (DESs) were selected for this study where ChCl was common in all the DESs and the hydrogen bond donors (HBDs) were varied. The most energetically favorable cluster was selected using MD simulation followed by density functional theory calculation. The most stable cluster structures were fully optimized, and their quantum chemical properties and IR spectra were computed at the ωB97XD/6-31G++(d,p) level of theory. Principal component analysis was performed to distinguish their behavioral differences and to find out if any correlation exists among the 1:1 and 1:2 clusters. The atom-atom radial distribution functions based on MD simulations revealed that several hydrogen bonds were formed among the donor and acceptor molecules. However, the most prominent hydrogen bonds were found to be N-HHBD⋯Cl- for ChCl:U, ChCl:TU, and ChCl:Ace and O-HHBD⋯Cl- for ChCl:Glu, ChCl:Ma, ChCl:Ox, ChCl:Gly, and ChCl:Phe. Both N-HHBD⋯Cl- and O-HHBD⋯Cl- were major interactions for ChCl:Pro, where Cl- worked as a bridge between Ch+ and the respective donors. In addition, the -OH of Ch+ showed strong intermolecular interactions with the acceptor groups of the donor molecules, such as C=O and O-H. This study has tried to extract a pattern of the contributions of HBDs by comparing the structural, spectroscopic, and thermodynamic properties of ChCl-based DESs, which have also been successfully correlated with the intermolecular interactions.

7.
Indian J Anaesth ; 65(4): 282-288, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34103741

ABSTRACT

BACKGROUND AND AIMS: Sevoflurane and desflurane have almost similar blood-gas solubility but recent studies suggest that desflurane compared to sevoflurane leads to faster recovery of airway reflexes, but the recovery of cognitive function varies significantly. We conducted this study to compare the times of recovery from anaesthesia following desflurane versus sevoflurane anaesthesia. METHODS: This randomised double-blinded study was conducted on 60 patients of American Society of Anesthesiologists (ASA) classification I-II, age between 18 and 60 years with body mass index (BMI) ≤30 kg/m2 who underwent elective cholecystectomy. A standard general anaesthesia protocol was followed with either sevoflurane (group A = 30 patients) or desflurane (group B = 30 patients) along with bispectral index and neuromuscular monitoring. Following extubation, tests for recovery of airway reflexes and cognitive function were conducted and various time intervals were noted. Statistical analysis was carried out using Statistical Package for Social Sciences (SPSS) standard software version 17. RESULTS: The mean time from first verbal response to first passing the swallowing test was comparable in both the groups (5.50 ± 3.45 vs. 4.10 ± 3.42 min, P value = 0.120). Patients receiving desflurane showed faster response to verbal commands (5.93 ± 4.13 vs. 8.20 ± 3.39 min, P value = 0.024), passed the swallowing test earlier (10.03 ± 4.97 vs. 13.70 ± 3.48 min, P value = 0.009) and Short orientation memory concentration test (SOMCT) earlier (9.83 ± 4.51 vs. 14.10 ± 4.31 min, P value ≤0.001) compared to sevoflurane. CONCLUSION: In patients undergoing laparoscopic cholecystectomy under controlled conditions, earlier recovery is seen with desflurane compared to sevoflurane.

8.
J Phys Chem A ; 124(23): 4690-4699, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32396354

ABSTRACT

In this study, atomic level interactions of a 1:1 choline chloride (ChCl)/acetylsalicylic acid (ASA) therapeutic deep eutectic solvent (THDES) has been investigated by combining the molecular dynamics (MD), density functional theory (DFT), and spectroscopic (Raman and IR) techniques. Atom-atom radial distribution functions (RDFs) based on MD simulation reveal that hydrogen bonds are formed between Cl-···HOCh+ and Cl-···HOCOOH of the THDES, where Cl- works as a bridge between ASA and Ch+. Cation-anion electrostatic attractions are disrupted by highly interconnected hydrogen bonds. Cluster conformers of the THDES are isolated from MD simulation and optimized using ωB97XD/6-311++G(d,p) level of theory, in which the strongest H bonds are found among OHCh+···Cl- (2.37 Å) and Cl-···HOCOOH(2.40 Å). Charge transfer calculations, using CHEPLG and NBO analysis, disclose that the charge of Cl- is reduced in the cluster structures and transferred to Ch+ and ASA. Further analyses are conducted using experimental and computed spectroscopic data. These confirm the formation of the THDES as peaks for -COOH, -COOR, and -OH functional groups of ASA and ChCl are either get broadened or disappeared in the spectra of the cluster conformers. Moreover, principal component analysis (PCA) assists to understand the feature of the simulated data and confirms the formation of the THDES. Solvent selectivity triangle (SST) of solvatochromic parameters also demonstrate that this THDES has some important properties similar to ionic liquids and common deep eutectic solvent.

10.
RSC Adv ; 9(12): 6556-6567, 2019 Feb 22.
Article in English | MEDLINE | ID: mdl-35518479

ABSTRACT

Herein, we have investigated the interaction of bovine serum albumin (BSA), the most abundant globular protein, with a conventional cationic surfactant, cetyldimethylethylammonium bromide (CDMEAB), through a conductivity technique in the absence/presence of electrolyte solutions at various temperatures (298.15-323.15 K). The interaction of the protein with drugs/surfactants and other additives plays a crucial role in the body. Hence, the main concern of the study is to extract the impact of BSA on surfactant molecules and vice versa. From the specific conductivity versus concentration of surfactant plots, three different noticeable critical micelle concentration (c*) values were obtained for pure CDMEAB and its mixture with protein/protein + salts. The presence of BSA and electrolytes altered the c* values of CDMEAB revealing interactions among the studied constituents where the salt solutions reduced the c* values and created a convenient environment for favorable micellization. The negative magnitudes achieved for standard free energy changes (ΔG 0 m) suggest spontaneity of micellization while the values of ΔH 0 m and ΔS 0 m signified the existence of some electrostatic and hydrophobic interactions. The values of molar heat capacity (ΔC 0 m) were positive as well as small which was an indication of less structural deformation. Molecular Dynamics (MD) simulation for all atoms revealed that the salt ions promoted non-covalent interaction between BSA and CDMEAB, and such interactions were not observed in the absence of the salt. Protein structure remained nearly same in spite of strong interaction with CDMEAB as evident from the overall RMSD (root-mean-square deviation) values of the alpha carbons and backbone of the protein and RMSF (root-mean-square fluctuation) values of the amino acid residues present in BSA. In this work thermodynamic parameters of transfer (such as ΔG 0 m.tr., ΔH 0 m.tr., and ΔC 0 p.m.tr.) were also evaluated and the results are discussed in detail. Besides, contributions of enthalpy and entropy to free energy changes were also analyzed.

11.
Genomics ; 111(3): 426-435, 2019 05.
Article in English | MEDLINE | ID: mdl-29501678

ABSTRACT

Mycobacterium is gram positive, slow growing, disease causing Actinobacteria. Beside potential pathogenic species, Mycobacterium also contains opportunistic pathogens as well as free living non-pathogenic species. Disease related various analyses on Mycobacterium tuberculosis are very widespread. However, genomic study of overall Mycobacterium species for understanding the selection pressure on genes as well as evolution of the organism is still illusive. MLSA and 16s rDNA based analysis has been generated for 241 Mycobacterium strains and a detailed analysis of codon and amino acid usage bias of mycobacterial genes, their functional analysis have been done. Further the evolutionary features of M. avium complex also have been revealed. Mycobacterial genes are moderately GC rich showed higher expression level in PPs and significant negative correlation with biosynthetic cost of proteins. Translational selection pressure was observed in mycobacterial genes. MAC showed close relationship with NPs and higher evolutionary rate in MAC revealed their constant evolving nature.


Subject(s)
Genome, Bacterial , Mycobacterium/genetics , Phylogeny , DNA, Ribosomal , Evolution, Molecular , Genomics , Mycobacterium avium/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...