Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Opt Express ; 15(7): 4176-4189, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39022549

ABSTRACT

We demonstrated an easy-to-build, portable diffuse reflectance spectroscopy device along with a Monte Carlo inverse model to quantify tissue absorption and scattering-based parameters of orthotopic head and neck cancer models in vivo. Both tissue-mimicking phantom studies and animal studies were conducted to verify the optical spectroscopy system and Monte Carlo inverse model for the accurate extraction of tissue optical properties. For the first time, we reported the tissue absorption and scattering coefficients of mouse normal tongue tissues and tongue tumor tissues. Our in vivo animal studies showed reduced total hemoglobin concentration, lower tissue vascular oxygen saturation, and increased tissue scattering in the orthotopic tongue tumors compared to the normal tongue tissues. Our data also showed that mice tongue tumors with different sizes may have significantly different tissue absorption and scattering-based parameters. Small tongue tumors (volume was ∼60 mm3) had increased absorption coefficients, decreased reduced-scattering coefficients, and increased total hemoglobin concentrations compared to tiny tongue tumors (volume was ∼18 mm3). These results demonstrated the potential of diffuse reflectance spectroscopy to noninvasively evaluate tumor biology using orthotopic tongue cancer models for future head and neck cancer research.

2.
Biomed Opt Express ; 14(10): 5418-5439, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37854556

ABSTRACT

Fiber-optic probes are commonly used in biomedical optical spectroscopy platforms for light delivery and collection. At the same time, it was reported that the inconsistent probe-sample contact could induce significant distortions in measured optical signals, which consequently cause large analysis errors. To address this challenge, non-contact optical spectroscopy has been explored for tissue characterizations. However, existing non-contact optical spectroscopy platforms primarily focused on diffuse reflectance measurements and may still use a fiber probe in which the probe was imaged onto the tissue surface using a lens, which serves as a non-contact probe for the measurements. Here, we report a fiber-probe-free, dark-field-based, non-contact optical spectroscopy for both diffuse reflectance and fluorescence measurements on turbid medium and tissues. To optimize the system design, we developed a novel Monte Carlo method to simulate such a non-contact setup for both diffuse reflectance and fluorescence measurements on murine subcutaneous tissue models with a spherical tumor-like target. We performed Monte Carlo simulations to identify the most tumor-sensitive configurations, from which we found that both the depth of the light focal point in tissue and the lens numerical aperture would dramatically affect the system's tumor detection sensitivity. We then conducted tissue-mimicking phantom studies to solidify these findings. Our reported Monte Carlo technique can be a useful computational tool for designing non-contact optical spectroscopy systems. Our non-contact optical setup and experimental findings will potentially offer a new approach for sensitive optical monitoring of tumor physiology in biological models using a non-contact optical spectroscopy platform to advance cancer research.

SELECTION OF CITATIONS
SEARCH DETAIL
...