Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Rec ; 24(1): e202200310, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36861955

ABSTRACT

Aqueous Zn-ion battery systems (AZIBs) have emerged as the most dependable solution, as demonstrated by successful systematic growth over the past few years. Cost effectivity, high performance and power density with prolonged life cycle are some major reason of the recent progress in AZIBs. Development of vanadium-based cathodic materials for AZIBs has appeared widely. This review contains a brief display of the basic facts and history of AZIBs. An insight section on zinc storage mechanism ramifications is given. A detailed discussion is conducted on features of high-performance and long life-time cathodes. Such features include design, modifications, electrochemical and cyclic performance, along with stability and zinc storage pathway of vanadium based cathodes from 2018 to 2022. Finally, this review outlines obstacles and opportunities with encouragement for gathering a strong conviction for future advancement in vanadium-based cathodes for AZIBs.

2.
Chem Rec ; 24(1): e202300216, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37651034

ABSTRACT

In recent years, the rapid growth in renewable energy applications has created a significant demand for efficient energy storage solutions on a large scale. Among the various options, rechargeable zinc-air batteries (ZABs) have emerged as an appealing choice in green energy storage technology due to their higher energy density, sustainability, and cost-effectiveness. Regarding this fact, a spotlight is shaded on air electrode for constructing high-performance ZABs. Cobalt oxide-based electrocatalysts on the air electrode have gained significant attention due to their extraordinary features. Particularly, exploration and integration of bifunctional behavior for energy storage has remarkably promoted both ORR and OER to facilitate the overall performance of the battery. The plot of this review is forwarded towards in-depth analysis of the latest advancements in electrocatalysts that are based on cobalt oxide and possess bifunctional properties along with an introduction of the fundamental aspects of ZABs, Additionally, the topic entails an examination of the morphological variations and mechanistic details mentioning about the synthesis processes. Finally, a direction is provided for future research endeavors through addressing the challenges and prospects in the advancement of next-generation bifunctional electrocatalysts to empower high-performing ZABs with bifunctional cobalt oxide.

3.
Chem Asian J ; 17(23): e202200897, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36194730

ABSTRACT

Glucose detection is considered a significant area and has remained the topic of considerable attention. Remarkable technological advancements have been observed in diabetes monitoring in the past decades. This continual progress helps to track recent trends in development as well as identify challenging issues in glucose sensor construction. Thus, a comprehensive synopsis of the most recent advancements and developments in the study of nickel (Ni) nanostructure-based sensors for efficient trace-level glucose detection, following non-enzymatic and electrochemical methods, is provided in this review. Moreover, this review is intensively focused on the methodologies for the structure, morphology, preparation, and enforcement of a variety of Ni nanostructures, including Ni nanosheets with metals, Ni nanospheres with metals/mixed metals, Ni-metal nanocomposites, metal nanoparticles-decorated Ni nanowires, Ni nanoparticles, Ni-decorated metal nanotube arrays, Ni nanoneedles and nanorods with metals, nanoporous, nanoplates, nanocoated Ni with metal composites, and Ni-composed hybrid nanostructures. Various demonstrations and categorizations are provided on Ni-based nanostructures for a clear understanding for diverse readers.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nanostructures , Nickel/chemistry , Glucose , Nanostructures/chemistry , Electrochemical Techniques , Metal Nanoparticles/chemistry , Metals , Electrodes
4.
Chem Asian J ; 17(20): e202200823, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36039466

ABSTRACT

Nitrite is one of the abundant toxic components existing in the environment and is likely to have a great potential to affect human health badly. For that reason, it has become crucial to build a reliable nitrite detection method. In recent years, several nitrite monitoring systems have been proposed. Compared with traditional analytical strategies, the electrochemical approach has a bunch of advantages, including low cost, rapid response, easy operation, simplicity, etc. In this case, noble metal nanomaterials, especially Au-based nanomaterials, have attracted attention in electrode modification because of higher catalytic activity, facile mass transfer, and broad active area for determining nitrite. This review is based on the state-of-the-art, which includes a variety of nanomaterials that have been coupled with gold nanoparticles (AuNPs) for the creation of nanocomposites, and the construction as well as development of electrochemical sensors for nitrite detection over the last few years (2016-2022). A background study on synthesizing different morphological AuNPs and nanocomposites has also been introduced. The fabrication methods and sensing capabilities of modified electrodes are given special consideration.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nanocomposites , Humans , Gold , Nitrites , Electrochemical Techniques/methods , Limit of Detection , Electrodes , Biosensing Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...