Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 2598, 2020 02 13.
Article in English | MEDLINE | ID: mdl-32054975

ABSTRACT

The present study reports the antibacterial properties of flower-shaped ZnO (FZnO) microstructures and its comparison with that of hexagon-shaped bulk ZnO (BZnO) nanostructures. The samples are prepared successfully by wet chemical method and the surface morphologies, structures and size of the ZnO samples are characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), BET adsorption isotherm, and Photoluminescence (PL) Spectroscopy. The SEM and TEM images of the sample have confirmed flower-shaped structure of the ZnO. The materials are also analyzed by using an innovative tool called Lacunarity, a nonlinear dynamical (NLD) tool for proper understanding of the inherent surface properties of the particles formed, comparing the results estimated with the BET results obtained, thereby confirming our proposition to use it as an important parameter in predictive models. In this new approach, geometry of the surface structure is being associated with biological properties, in order to come up with easier ways to identify materials for any such applications where rich surface structure is desired. The photocatalytic activity of the flower-shaped material is carried out to find out its optical properties as another marker for confirming the antimicrobial activities. It has been reported for the first time that the prominent antibacterial activities are favoured by the FZnO microstructure having lesser Lacunarity, significantly better than its bulk counterpart, for inhibiting gram negative - Escherichia coli microorganism.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Nanostructures/chemistry , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Catalysis , Escherichia coli Infections/prevention & control , Humans , Nanostructures/ultrastructure , Surface Properties
2.
Mater Sci Eng C Mater Biol Appl ; 106: 110177, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31753405

ABSTRACT

ZnO nanoparticles (NPs) have variety of applications in different fields due to its size, structure, as well as physical and chemical properties. One of its prominent characteristics is its antibacterial behavior. Nonlinear Dynamical Theory (NLD) has a vast scope in the field of material science, especially when subtle correlations are searched for to extract hidden information. Since nano-ZnO materials may be used in inhibiting pathogens, its nonlinear features can be quantified and calibrated with the help of NLD tools. Multi-fractal Analysis (MFA) is an important diagnostic tool of NLD for not only analyzing nonlinear signal or images, but also predicting any spurious events likely to occur in the system under study. Thus, the analysis of the surface texture of the ZnO nano particles formed, using the TEM images and relate it with the variations of the XRD signal using NLD tools, is our first attempt reported here. Further, tools of MFA are used, for the first time, to see if there exists any correlation between the texture of the nano particles formed and the Zone of Inhibition (ZoI) we obtain as an output after allowing certain pathogens inhibit in the presence of the same nano particles. Analysis of TEM images guide us to predict the texture and structure of crystallites of ZnO:Cu samples which are responsible for overall behavior of inhibiting pathogens. In this paper, MFA of ZoI images, TEM images, and signal of four different Cu-doped ZnO nanoparticles are carried out and their outcomes are calibrated for estimating the size and pattern of unknown NPs synthesized under similar physical and chemical condition. Moreover, that MFA can be used reliably to predict spurious or abnormal surface structure or bacterial inhibition is also established.


Subject(s)
Anti-Bacterial Agents/chemistry , Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Zinc Oxide/chemistry , Green Chemistry Technology , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...