Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 10(4): 2299-2323, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38551335

ABSTRACT

Over the past few decades, there has been significant interest in smart drug delivery systems capable of carrying multiple drugs efficiently, particularly for treating genetic diseases such as cancer. Despite the development of various drug delivery systems, a safe and effective method for delivering both anticancer drugs and therapeutic genes for cancer therapy remains elusive. In this study, we describe the synthesis of a photoswitchable smart polymeric vehicle comprising a photoswitchable spiropyran moiety and an amino-acid-based cationic monomer-based block copolymer using reversible addition-fragmentation chain transfer (RAFT) polymerization. This system aims at diagnosing triple-negative breast cancer and subsequently delivering genes and anticancer agents. Triple-negative breast cancer patients have elevated concentrations of Cu2+ ions, making them excellent targets for diagnosis. The polymer can detect Cu2+ ions with a low limit of detection value of 9.06 nM. In vitro studies on doxorubicin drug release demonstrated sustained delivery at acidic pH level similar to the tumor environment. Furthermore, the polymer exhibited excellent blood compatibility even at the concentration as high as 500 µg/mL. Additionally, it displayed a high transfection efficiency of approximately 82 ± 5% in MDA-MB-231 triple-negative breast cancer cells at an N/P ratio of 50:1. It is observed that mitochondrial membrane depolarization and intracellular reactive oxygen species generation are responsible for apoptosis and the higher number of apoptotic cells, which occurred through the arrest of the G2/M phase of the cell cycle were observed. Therefore, the synthesized light-responsive cationic polymer may be an effective system for diagnosis, with an efficient anticancer drug and gene carrier for the treatment of triple-negative breast cancer in the future.


Subject(s)
Antineoplastic Agents , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Drug Delivery Systems , Antineoplastic Agents/pharmacology , Polymers , Ions
2.
J Mater Chem B ; 11(16): 3617-3634, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37014090

ABSTRACT

To date, the synthesis of efficient and safe gene carriers with low toxicity and appreciable gene transfection efficiency has been the major hurdle associated with non-viral gene carriers. Herein, we synthesized three amino acid-based diblock copolymers comprising glycine-leucine, leucine-phenyl alanine and glycine-phenyl alanine group containing blocks. The synthesis of all the diblock copolymers was confirmed by FTIR, 1H NMR, DLS and GPC techniques. All the polymers showed a high positive zeta potential value that varies from 45 ± 1 mV to 56 ± 1 mV, and the hydrodynamic size of the polymers varies from 250 ± 8 to 303 ± 14 nm. The three polymers showed negligible cytotoxicity compared with PEI (25 kDa) for MDA-MB-231 and NKE cells. Among all other polymers, P(HGN)n-b-P(HPN)m exhibited the highest biocompatibility with ∼70% cell viability at a concentration of 200 µg mL-1. Hemolysis data revealed that among all three polymers, P(HGN)n-b-P(HPN)m exhibited the highest blood compatibility, while up to a high concentration of 200 µg mL-1, it showed a very negligible amount (∼18%) of hemolysis. Most importantly, excellent gene complexation capability and good protection of pDNA against enzymatic degradation were observed with all three diblock copolymers. Interestingly, P(HGN)n-b-P(HPN)m/pDNA complex showed the smallest particle size (∼15 nm) and highest positive zeta potential as observed from TEM micrographs and DLS analysis, which probably results significantly higher level of cellular uptake and hence the highest transfection efficiency (∼85%) against MDA-MB-231 cells. Therefore, the diblock copolymer P(HGN)n-b-P(HPN)m with superior gene transfection efficiency in triple negative breast cancer may be an efficient non-viral vector for successful TNBC therapy in the future.


Subject(s)
Polyethylene Glycols , Triple Negative Breast Neoplasms , Humans , Polyethylene Glycols/chemistry , Triple Negative Breast Neoplasms/genetics , Amino Acids , Leucine , Hemolysis , Polymers/chemistry , Transfection , Glycine , Alanine
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 273: 120989, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35183856

ABSTRACT

A novel oxene based unusual sensory receptor (HyMa) has been synthesized via.Knoevenagel condensation triggered carbon-heteroatom (oxygen) intramolecular bond formation reaction at room temperature for discriminative detection of multi-analytes like HSO4-, CN- & F- by spectro-photometric alterations with profound selectivity with the detection limit of 38 ppb, 18 ppb & 94 ppb respectively. Examination of the sensing mechanism was exhaustively investigated through several spectroscopic means like 1H NMR, FT-IR, absorption and fluorescence spectra etc. In addition, quantum mechanical calculations like DFT and Loewdin spin population analyses also validated the rationality of the host-guest interaction. Apart from these, the reversible spectroscopic responses of HyMa towards F- and Al3+ can imitate several complex logic functions that in turn help in preparing molecular keypad lock. This molecular keypad lock has the potential to protect the confidential information at the molecular scale. Additionally, the MTT assay of HyMa showed low cytotoxicity and membrane permeability indicating its attractive capability for bio-imaging towards triple negative breast cancer. HyMa-coated test strips could also be employed towards on-site detection of these deadly contaminants via "Dip Stick" approach without help of any instrumentation. In addition, HyMa has also been exploited for quantitative determination of HSO4- from various real water samples. In a nutshell, detection of lethal contaminants like CN-, F- & HSO4- at ppb level with in vitro live cell imaging has been explored with proper photophysical characterisation and theoretical calculations with real field applications.


Subject(s)
Breast Neoplasms , Epoxy Compounds , Female , Humans , Spectrometry, Fluorescence , Spectroscopy, Fourier Transform Infrared
4.
RSC Adv ; 11(28): 16913-16923, 2021 May 06.
Article in English | MEDLINE | ID: mdl-35479720

ABSTRACT

In this work, core-shell supramolecular assembly polymeric nano-architectures containing hydrophilic and hydrophobic segments were synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization. Herein, polyethylene glycol methyl ether methacrylate (PEGMA), and stearic acid were used to synthesize the poly(PEGMA) homopolymer and stearyl ethyl methacrylate (SEMA), respectively. Then, PEGMA and SEMA were polymerized through controlled RAFT polymerization to obtain the final diblock copolymer, poly(PEGMA-co-SEMA) (BCP). Model anticancer drug, doxorubicin (DOX) was loaded on BCPs. Interestingly, efficient DOX release was observed at acidic pH, similar to the cancerous environment pH level. Significant cellular uptake of DOX loaded BCP50 (BCP50-DOX) was observed in MDA-MB-231 triple negative breast cancer cells and resulted in a 35 fold increase in anticancer activity against MDA MB-231 cells compared to free DOX. Scanning electron microscopy (SEM) imaging confirmed the apoptosis mediated cellular death. These core-shell supramolecular assembly polymeric nano-architectures may be an efficient anti-cancer drug delivery system in the future.

5.
ACS Appl Bio Mater ; 2(12): 5349-5365, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-35021535

ABSTRACT

The success of gene therapy is enormously dependent on an efficient gene carrier, and in this context, cationic polymers still continue to play a major role particularly with respect to the safety issue compared to viral vectors. Developing an efficient gene carrier system having promising gene transfection efficiency with low toxicity is the foremost impediment associated with a nonviral carrier. Here, we explored amino acid based biocompatible polymers synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization where glycine (Gly), leucine (Leu), and phenyl alanine (Phe) amino acids were used as the pendent groups of the polymeric brushes. The presence of both a hydrophobic group (long chain aliphatic group associated with the RAFT agent) and hydrophilic amino groups was associated with the supramolecular assembly of the polymeric chain having hydrodynamic sizes within the range of 150-300 nm with a positive zeta potential of 30 ± 5 mV. All polymers showed very low toxicity and possessed >80% cell viability even at a very high concentration of 1000 µg/mL against both normal and cancerous cells. In addition to this, the polymers also showed excellent blood compatibility, and negligible hemolysis was observed at the concentration of 500 µg/mL. All polymers showed efficient DNA complexation capability as well as excellent protection of DNA against highly negatively charged surfactant and enzymatic digestion, although the efficiency was dependent on the N/P ratio of polymer/DNA complexes. Interestingly, the phenyl alanine moiety containing polymer brush P(HEMA-Phe-NH2) showed a hexagonal shaped nanoparticle after complexation with pDNA and consequently showed higher cellular uptake, resulting in a higher transfection efficiency in a triple negative breast cancer cell, the MDA-MB-231 cell. Therefore, the synthesized polymer containing an amino acid pendent group, especially the phenyl alanine moiety, may be a promising nonviral gene carrier system in gene therapy application in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...