Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Heart J Digit Health ; 2(3): 437-445, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34604758

ABSTRACT

AIMS: This work attempts to develop a standalone heart rhythm alerting system for the intensive care unit (ICU), where life-threatening arrhythmias have to be identified/alerted more precisely and more instantaneously (i.e. with lower latency) than existing bedside monitors. METHODS AND RESULTS: We use the dataset from the PhysioNet 2015 Challenge, which contains records that led to true and false arrhythmic alarms in the ICU. These records have been re-annotated as one of eight classes, namely (i) asystole, (ii) extreme bradycardia, (iii) extreme tachycardia, (iv) ventricular fibrillation (VF), (v) ventricular tachycardia (VT), (vi) normal sinus rhythm, (vii) sinus tachycardia, and (viii) noise/artefacts. Arrhythmia-specific features and features that measure the signal quality were extracted from all the records. To improve VF detection, an improved, over an existing, single-lead R-wave detection was developed that takes into account the R-waves detected in all electrocardiographic (ECG) leads. To avoid false R-wave detection due to pacing spikes, ECG signals were filtered with a low pass filter prior to R-wave detection, while the raw signals were used for feature extraction. Random forest was used as the classifier, and 10-time five-fold cross-validation, resulted in a macro-average sensitivity of 81.54%. CONCLUSIONS: In conclusion, comparing with the bedside monitors used in the PhysioNet 2015 competition, we find that our method achieves higher positive predictive values for asystole, extreme bradycardia, VT, and VF; furthermore, our method is able to alert the presence of arrhythmia instantaneously, i.e. up to 4 s earlier.

2.
NPJ Digit Med ; 2: 86, 2019.
Article in English | MEDLINE | ID: mdl-31508497

ABSTRACT

This work attempts to reduce the number of false alarms generated by bedside monitors in the intensive care unit (ICU), as a majority of current alarms are false. In this study, we applied methods that can be categorized into three stages: signal processing, feature extraction, and optimized machine learning. At the stage of signal processing, we ensured that the heartbeats were properly annotated. During feature extraction, besides extracting features that are relevant to the arrhythmic alarms, we also extracted a set of signal quality indices (SQIs), which we used to distinguish noise/artifact from normal physiological signals. When applying a machine learning algorithm (Random Forest), we performed feature selection in order to reduce the complexity of the models and improve the efficiency of the algorithm. The dataset used is from Reducing False Arrhythmia Alarms in the ICU: the PhysioNet/Computing in Cardiology Challenge 2015. Using the performance metric "score" from the Challenge, we achieved a score of 83.08 in the real-time category on the hidden test set, which is the highest in all published work.

SELECTION OF CITATIONS
SEARCH DETAIL
...