Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
RSC Adv ; 13(3): 1701-1710, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36712607

ABSTRACT

Two series of new 2,1-benzothiazine derivatives have been synthesized by condensation of 4-hydrazono-1-methyl-3,4-dihydro-1H-benzo[c][1,2]thiazine 2,2-dioxide (5) with 2-chloroquinoline-3-carbaldehydes and acetylthiophenes to acquire new heteroaryl ethylidenes 7(a-f) and 9(a-k) in excellent yields. After characterization by FTIR, 1H NMR, 13C NMR and elemental analyses, the newly synthesized analogues were investigated against monoamine oxidase enzymes (MAO A and MAO B). The titled compounds exhibited activity in the lower micromolar range among which 9e was the most potent compound against MAO A with IC50 of 1.04 ± 0.01 µM whereas 9h proved to be the most potent derivative against MAO B with an IC50 value of 1.03 ± 0.17 µM. Furthermore, in vitro results were further endorsed by molecular docking studies to determine the interaction between the potent compounds and the enzyme active site. These newly synthesized compounds represent promising hits for the development of safer and potent lead molecules for therapeutic use against depression and other neurological diseases.

2.
Front Nutr ; 9: 1047827, 2022.
Article in English | MEDLINE | ID: mdl-36407508

ABSTRACT

Bisphenol A (BPA) is a synthetic chemical widely employed to synthesize epoxy resins, polymer materials, and polycarbonate plastics. BPA is abundant in the environment, i.e., in food containers, water bottles, thermal papers, toys, medical devices, etc., and is incorporated into soil/water through leaching. Being a potent endocrine disrupter, and has the potential to alter several body mechanisms. Studies confirmed its anti-androgen action and estrogen-like effects, which impart many negative health impacts, especially on the immune system, neuroendocrine process, and reproductive mechanism. Moreover, it can also induce mutagenesis and carcinogenesis, as per recent scientific research. This review focuses on BPA's presence and concentrations in different environments, food sources and the basic mechanisms of BPA-induced toxicity and health disruptions. It is a unique review of its type because it focuses on the association of cancer, hormonal disruption, immunosuppression, and infertility with BPA. These issues are widespread today, and BPA significantly contributes to their incidence because of its wide usage in daily life utensils and other accessories. The review also discusses researched-based measures to cope with the toxic chemical.

3.
Food Sci Anim Resour ; 42(4): 672-688, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35855273

ABSTRACT

The objective of this study was to explore the potential of front face fluorescence spectroscopy (FFFS) as rapid, non-destructive and inclusive technique along with multi-variate analysis for predicting meat adulteration. For this purpose (FFFS) was used to discriminate pure minced beef meat and adulterated minced beef meat containing (1%, 2%, 3%, 4%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%) of chicken meat as an adulterant in uncooked beef meat samples. Fixed excitation (290 nm, 322 nm, and 340 nm) and fixed emission (410 nm) wavelengths were used for performing analysis. Fluorescence spectra were acquired from pure and adulterated meat samples to differentiate pure and binary mixtures of meat samples. Principle component analysis, partial least square regression and hierarchical cluster analysis were used as chemometric tools to find out the information from spectral data. These chemometric tools predict adulteration in minced beef meat up to 10% chicken meat but are not good in distinguishing adulteration level from 1% to 5%. The results of this research provide baseline for future work for generating spectral libraries using larger datasets for on-line detection of meat authenticity by using fluorescence spectroscopy.

4.
J Food Biochem ; 46(11): e14263, 2022 11.
Article in English | MEDLINE | ID: mdl-35642132

ABSTRACT

Medicinal plants from the family Moraceae have diverse applications in agriculture, cosmetics, food, and the pharmaceutical industry. Their extensive spectrum of pharmacological activity for treating numerous inflammatory illnesses, cancer, cardiovascular diseases, and gastrointestinal problems reflects their biological and therapeutic value. This article summarizes the molecular mechanisms related to the biological implications of mulberry extracts, fractions, and isolated bioactive compounds from different parts in various health-related ailments. Additionally, the food industry and animal nutrition applications are summarized. Phytochemicals such as steroids, saponins, alkaloids, glycosides, polysaccharides, and phenolic compounds including terpenoids, flavonoids, anthocyanins, and tannins are found in this medicinal plant. The aqueous, ethanolic, and methanolic extracts, as well as bioactive compounds, have anti-oxidative, hypoglycemic, nephroprotective, antimicrobial, neuroprotective, anti-mutagenic, hepatoprotective, anthelmintic, immune-modulatory, cardioprotective, and skin protecting activities. Mulberry supplementation in food products improves the stability of phenolics, sensory properties, antioxidant activity, and antimicrobial properties. Mulberry leaves in animal feed increase the nutrient digestibility, growth parameters, antimicrobial, and antioxidant properties. PRACTICAL APPLICATIONS: This review summarized the in vivo and in vitro biological activities of the mulberry and isolated constituents in various health conditions. In addition, the food uses such as antioxidant potential, antimicrobial, and physicochemical properties were discussed. Furthermore, in vivo studies revealed mulberry as a significant protein source and its flavonoids as potential animal foliage.


Subject(s)
Anti-Infective Agents , Morus , Plants, Medicinal , Animals , Morus/chemistry , Antioxidants/pharmacology , Functional Food , Anthocyanins , Plant Extracts/pharmacology , Plant Extracts/chemistry , Flavonoids , Anti-Infective Agents/pharmacology , Phenols
5.
Food Sci Nutr ; 10(4): 1239-1247, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35432955

ABSTRACT

Three energy-rich protein (ERP) bars were prepared to meet the daily recommended dietary allowance (RDA) for the protein of Pakistani athletes. The bars were developed using dates, cheddar cheese (CC), whey protein isolate (WPI), roasted chickpea flour, and rice flour in different proportions. Bar #1 contained 64 g dates, 16 g dried apricots, 12 g WPI, and 8 g ripened CC. Bar #2 contained the same proportion of these ingredients with an addition of 12.5 g roasted chickpea flour, while bar #3 contained 6.25 g roasted rice and 6.25 g roasted chickpea flour. All the ingredients were homogeneously mixed into paste to form bars weighing 100-110 g per serving size. These bars were studied for the compositional analysis (moisture, protein, and lipid content), protein characterization through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and in vitro determination of the angiotensin I-converting enzyme (ACE-I) antihypertensive activity. Moisture and lipid content in bars were 22% and 0.057%-0.313%, respectively, while protein, fiber, and ash contents varied from 22.3% to 23.6%, 6.66 to 5.81, and 2.12% to 2.44%, respectively. The minimum energy content was recorded (272.70 Kcal/100 g) in bar #1 while bar #3 showed the highest energy content 274.65 Kcal/110 g with the addition of (5%) roasted chickpea and rice flour, respectively. Electrophoresis analysis of proteins in bar # 1 (cheese +WPI) showed the four bands at 62, 24, 20, and 12 kDa. Bar #2 (10% roasted chickpea flour) showed some additional bands at 40, 36, 34, and 28 kDa while relatively lower antihypertensive activity than bars #1 and 3. The study revealed that adding 10% roasted chickpea flour (bar #2) increased the protein content and diversity in proteins. It provided 40% proteins to athletes and could be helpful to meet their R.D.A. by consuming two bars/day.

6.
J Food Biochem ; 46(8): e14189, 2022 08.
Article in English | MEDLINE | ID: mdl-35474461

ABSTRACT

Epigallocatechin gallate (EGCG), a green tea catechin, has gained the attention of current study due to its excellent health-promoting effects. It possesses anti-obesity, antimicrobial, anticancer, anti-inflammatory activities, and is under extensive investigation in functional foods for improvement. It is susceptible to lower stability, lesser bioavailability, and lower absorption rate due to various environmental, processing, formulations, and gastrointestinal conditions of the human body. Therefore, it is the foremost concern for the researchers to enhance its bioactivity and make it the most suitable therapeutic compound for its clinical applications. In the current review, factors affecting the bioavailability of EGCG and the possible strategies to overcome these issues are reviewed and discussed. This review summarizes structural modifications and delivery through nanoparticle-based approaches including nano-emulsions, encapsulations, and silica-based nanoparticles for effective use of EGCG in functional foods. Moreover, recent advances to enhance EGCG therapeutic efficacy by specifically targeting its molecules to increase its bioavailability and stability are also described. PRACTICAL APPLICATIONS: The main green tea constituent EGCG possesses several health-promoting effects making EGCG a potential therapeutic compound to cure ailments. However, its low stability and bioavailability render its uses in many disorders. Synthesizing EGCG prodrugs by structural modifications helps against its low bioavailability and stability by overcoming premature degradation and lower absorption rate. This review paper summarizes various strategies that benefit EGCG under different physiological conditions. The esterification, nanoparticle approaches, silica-based EGCG-NPs, and EGCG formulations serve as ideal EGCG modification strategies to deliver superior concentrations with lesser toxicity for its efficient penetration and absorption across cells both in vitro and in vivo. As a result of EGCG modifications, its bioactivities would be highly improved at lower doses. The protected or modified EGCG molecule would have enhanced potential effects and stability that would contribute to the clinical applications and expand its use in various food and cosmetic industries.


Subject(s)
Catechin , Biological Availability , Catechin/analogs & derivatives , Humans , Silicon Dioxide , Tea/chemistry
7.
Crit Rev Food Sci Nutr ; 62(11): 3063-3087, 2022.
Article in English | MEDLINE | ID: mdl-33381982

ABSTRACT

The application of spectroscopic techniques can help in alleviating problems encountered during the processing of milk and dairy products. Indeed, traditional analytical methods (e.g., physicochemical measurements, sensory, chromatography) are relatively expensive, time-consuming, and require chemicals and sophisticated analytical equipment, and skilled operators. Hence, there is a need to develop faster and less costly methods for accurately monitoring changes in the quality of milk and other dairy products during processing and storage.Many nondestructive and noninvasive instrumental techniques are available for inline and online monitoring of food. These include fluorescence spectroscopy, mid-infrared (MIR), near-infrared (NIR), nuclear magnetic resonance (NMR), etc. These techniques are usually used in combination with chemometric tools a to explore the information present in spectral data.This review article will discuss the potential of the above-mentioned spectroscopic techniques for monitoring chemical modifications of dairy products and the prediction of their functional properties during processing. The advantages and disadvantages of each technique are also discussed in this review. Finally, some conclusions are drawn, and the future trends of these methods are presented.


Subject(s)
Dairy Products , Milk , Animals , Dairy Products/analysis , Milk/chemistry , Spectrum Analysis
8.
Molecules ; 26(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34946779

ABSTRACT

Hemp (Cannabis sativa L.) is a herbaceous anemophilous plant that belongs to the Cannabinaceae family. The cannabis seed (hemp) has long been utilized as a food source and is commercially important as an edible oil source. In this review, the positive and negative health effects of cannabis, the relationship between cannabis and various diseases, and the use of cannabis in various food products have been discussed. In addition, the scientific literature on the potential use of cannabis and its derivatives as a dietary supplement for the prevention and treatment of inflammatory and chronic degenerative diseases in animals and humans has been reviewed. Cannabis is being developed as a key ingredient in a variety of food items, including bakery, confectionery, beverages, dairy, fruits, vegetables, and meat. Hemp seeds are high in readily digestible proteins, lipids, polyunsaturated fatty acids (PUFA), insoluble fiber, carbs, and favorable omega-6 PUFA acid to omega-3 PUFA ratio and have high nutritional value. The antioxidants of cannabis, such as polyphenols, help with anxiety, oxidative stress, and the risk of chronic illnesses, including cancer, neurological disorders, digestive problems, and skin diseases. Cannabis has been shown to have negative health impacts on the respiratory system, driving, and psychomotor functions, and the reproductive system. Overall, the purpose of this research is to stimulate more in-depth research on cannabis's adaptation in various foods and for the treatment of chronic illnesses.


Subject(s)
Cannabis/chemistry , Dietary Supplements , Food Additives , Nutritive Value , Seeds/chemistry , Animals , Antioxidants/chemistry , Humans , Plant Oils/chemistry , Polyphenols/chemistry
9.
Molecules ; 26(23)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34885769

ABSTRACT

Vegetable oils (VOs), being our major dietary fat source, play a vital role in nourishment. Different VOs have highly contrasting fatty acid (FA) profiles and hence possess varying levels of health protectiveness. Consumption of a single VO cannot meet the recommended allowances of various FA either from saturated FA (SFA), monounsaturated FA (MUFA), polyunsaturated FA (PUFA), Ω-3 PUFAs, and medium-chain triglycerides (MCTs). Coconut oil (CO), flaxseed oil (FO), olive oil (OO), and sunflower oil (SFO) are among the top listed contrast VOs that are highly appreciated based on their rich contents of SFAs, Ω-3 PUFAs, MUFAs, and Ω-6 PUFA, respectively. Besides being protective against various disease biomarkers, these contrasting VOs are still inappropriate when consumed alone in 100% of daily fat recommendations. This review compiles the available data on blending of such contrasting VOs into single tailored blended oil (BO) with suitable FA composition to meet the recommended levels of SFA, MUFA, PUFA, MCTs, and Ω-3 to Ω-6 PUFA ratios which could ultimately serve as a cost-effective dietary intervention towards the health protectiveness and improvement of the whole population in general. The blending of any two or more VOs from CO, FO, OO, and SFO in the form of binary, ternary, or another type of blending was found to be very conclusive towards balancing FA composition; enhancing physiochemical and stability properties; and promising the therapeutic protectiveness of the resultant BOs.


Subject(s)
Coconut Oil/chemistry , Linseed Oil/chemistry , Olive Oil/chemistry , Sunflower Oil/chemistry , Dietary Fats, Unsaturated , Fatty Acids, Omega-3/chemistry , Fatty Acids, Unsaturated/chemistry , Humans , Plant Oils/chemistry , Triglycerides/chemistry
10.
Molecules ; 26(22)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34833974

ABSTRACT

Herbal plants have been utilized to treat and cure various health-related problems since ancient times. The use of Ayurvedic medicine is very significant because of its least reported side effects and host of advantages. Withania coagulans (Family; Solanaceae), a valuable medicinal plant, has been used to cure abnormal cell growth, wasting disorders, neural as well as physical problems, diabetes mellitus, insomnia, acute and chronic hepatic ailments. This review provides critical insight regarding the phytochemistry, biological activities, and pharmacognostic properties of W. coagulans. It has been known to possess diuretic, anti-inflammatory, anti-bacterial, anti-fungal, cardio-protective, hepato-protective, hypoglycemic, anti-oxidative, and anti-mutagenic properties owing to the existence of withanolides, an active compound present in it. Apart from withanolides, W. coagulans also contains many phytochemicals such as flavonoids, tannins, and ß-sterols. Several studies indicate that various parts of W. coagulans and their active constituents have numerous pharmacological and therapeutic properties and thus can be considered as a new drug therapy against multiple diseases.


Subject(s)
Phytochemicals/chemistry , Plant Extracts/chemistry , Withania/chemistry , Withanolides/chemistry , Animals , Food , Humans , Medicine, Ayurvedic , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plants, Medicinal/chemistry , Withanolides/pharmacology , Withanolides/therapeutic use
11.
Food Sci Nutr ; 9(9): 5131-5138, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34532022

ABSTRACT

Protein-energy malnutrition (PEM) is most prevalent and affecting a large number of children in Pakistan. Ready-to-use therapeutic food (RUTF) is a tackling strategy to overcome the PEM in Pakistan. The present research was designed to formulate RUTF from different indigenous sources. After conducting some preliminary trials, 14 RUTF formulations were developed by mixing peanut, mung bean, and chickpea alone as well as in various combinations with the addition of sugar, powdered milk, oil, and vitamin-mineral premix. Freshly prepared RUTF was stored at room temperature (20 ± 5°C) and packed in aluminum foil for 90 days to investigate the microbiological analysis (total plate count and mold count), water activity (Aw), peroxide value, and thiobarbituric acid (TBA) value. All the parameters showed significant (p < .05) differences among peanut, chickpea, and mung bean-based RUTF except water activity. The storage days and interaction between treatments and storage days also showed a significant (p < .05) effect on water activity, total plate count, mold count, peroxide value, and TBA of RUTF formulations. The present study revealed that the peanut, chickpea, and mung bean can be used in the formulation of RUTF due to their shelf stability and help to mitigate the PEM in Pakistan.

12.
Ultrason Sonochem ; 78: 105686, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34358980

ABSTRACT

Quercetin (QUR) have got the attention of scientific society frequently due to their wide range of potential applications. QUR has been the focal point for research in various fields, especially in food development. But, the QUR is highly unstable and can be interrupted by using conventional assessment methods. Therefore, researchers are focusing on novel extraction and non-invasive tools for the non-destructive assessment of QUR. The current review elaborates the different novel extraction (ultrasound-assisted extraction, microwave-assisted extraction, supercritical fluid extraction, and enzyme-assisted extraction) and non-destructive assessment techniques (fluorescence spectroscopy, terahertz spectroscopy, near-infrared spectroscopy, hyperspectral imaging, Raman spectroscopy, and surface-enhanced Raman spectroscopy) for the extraction and identification of QUR in agricultural products. The novel extraction approaches facilitate shorter extraction time, involve less organic solvent, and are environmentally friendly. While the non-destructive techniques are non-interruptive, label-free, reliable, accurate, and environmental friendly. The non-invasive spectroscopic and imaging methods are suitable for the sensitive detection of bioactive compounds than conventional techniques. QUR has potential therapeutic properties such as anti-obesity, anti-diabetes, antiallergic, antineoplastic agent, neuroprotector, antimicrobial, and antioxidant activities. Besides, due to the low bioavailability of QUR innovative drug delivery strategies (QUR loaded gel, QUR polymeric micelle, QUR nanoparticles, glucan-QUR conjugate, and QUR loaded mucoadhesive nanoemulsions) have been proposed to improve its bioavailability and providing novel therapeutic approaches.


Subject(s)
Nanoparticles , Quercetin/chemistry , Antioxidants , Biological Availability , Drug Delivery Systems
13.
Food Sci Nutr ; 9(7): 3971-3987, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34262752

ABSTRACT

Nelumbinis semen is commonly known as lotus seeds that have been used as a vegetable, functional food, and medicine for 7,000 years. These are low caloric, a rich source of multiple nutrients and bioactive constituents, which make it a unique therapeutic food. N. semen plays an important part in the physiological functions of the body. Nowadays, people are more conscious about their health and desire to treat disease naturally with minimal side effects. So, functional foods are getting popularity due to a wide range of essential constituents, which are associated to decrease the risk of chronic diseases. These bioactive compounds from seeds are involved in anti-adipogenic, antioxidant, antitumor, cardiovascular, hepato-protective, anti-inflammatory, anti-fertility, anti-microbial, anti-viral, hypoglycemic, etc. Moreover, the relationship between functional compounds along with their mechanism of action in the body, their extraction from the seeds for further research would be of great interest.

14.
Foods ; 9(11)2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33238624

ABSTRACT

Among developed countries, bovine milk production makes a major contribution towards the economy. Elevating consumer demand for functional foods has triggered a niche for non-bovine milk-based products. Mixing milks from different species can be a strategy to increase the consumption of non-bovine milk and enable consumers and dairy companies to benefit from their nutritional and technological advantages. Thus, this review aimed to gather the most important research on yoghurts derived from processing mixtures of milks of different species. We discuss the impact of milk mixtures (i.e., species and milk ratio) on nutritional, physicochemical, sensory, rheological and microbiological properties of yoghurts. More specifically, this paper only highlights studies that have provided a clear comparison between yoghurts processed from a mixture of two milk species and yoghurts processed from a single species of milk. Finally, certain limitations and future trends are discussed, and some recommendations are suggested for future research.

15.
Food Sci Nutr ; 8(6): 2619-2626, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32566179

ABSTRACT

An egg is a nutrient-dense food that contains protein, fats, vitamins, and minerals. It is proven that the consumption of eggs influences serum lipid concentration. Therefore, a study was conducted to investigate the effect of normal and omega-3 eggs on serum lipids profiles. Lipids were extracted from egg yolks and analyzed for fatty acids content. The present research is a crossover study design in which 20 participants were recruited randomly, and all subjects received three treatments: no eggs, omega-3 eggs, and normal eggs. However, fasting blood was drawn at baseline and the end of each diet period and analyzed for serum lipids, blood glucose, and insulin level. Omega-3 egg treatment showed reduction in the serum total cholesterol by 16.57 mg/dl (p < .001), triglyceride by 17.48 mg/dl, and increase in HDL cholesterol concentration by 0.48 mg/dl (p < .001) as compared to no-egg. A significant (p < .05) reduction in blood pressure by 8.34/8.67 mm/Hg and insulin level was observed due to omega-3 egg consumption which indicates that omega-3 fatty acids improve insulin sensitivity. On the other hand, regular egg intake elevates serum total cholesterol and triglycerides concentration but decreases blood pressure. It was concluded that omega-3-enriched egg consumption had a positive effect on the serum lipid profile and blood pressure of patients with metabolic syndrome as compared to normal eggs.

16.
Foods ; 9(2)2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32092858

ABSTRACT

The present study used descriptive sensory analysis (DSA) to compare Pizza cheeses prepared from various combinations of fresh Mozzarella and semi-ripened Cheddar cheeses and cooked under conventional and microwave cooking methods. A cheese sensory lexicon was developed, and descriptive sensory profiles of the Pizza cheeses were evaluated using a panel of semi-trained judges (n = 12). The following characteristics, flavor (cheddar, acidic, rancid, bitter, salty, creamy, and moldy), texture (stringiness, stretchability, firmness, and tooth pull), and appearance (meltability, oiliness, edge browning, and surface rupture) of Pizza cheeses were analyzed and compared with control samples. The sensory analysis of Pizza cheeses showed more preference toward a higher level of ripened Cheddar cheese (4 months), which was cooked using the microwave. However, the scores for texture properties were decreased with the addition of the semi-ripened cheese. The scores for stretchability and tooth pull were high in the microwave cooked samples compared with the conventionally cooked samples. The appearance attributes (meltability, oiliness, and edge browning) scores were increased with the increasing of ripened Cheddar cheese content while surface rupture was decreased. Microwave cooked Pizza cheese showed better meltability and oiliness but lower edge browning scores. The results showed that amalgamations of fresh Mozzarella and semi-ripened Cheddar cheese had a significant (p < 0.05) and positive effects on the sensory qualities of Pizza cheeses.

17.
Meat Sci ; 159: 107915, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31470197

ABSTRACT

The aim of this study was to calibrate chemometric models to predict beef M. longissimus thoracis et lumborum (LTL) sensory and textural values using visible-near infrared (VISNIR) spectroscopy. Spectra were collected on the cut surface of LTL steaks both on-line and off-line. Cooked LTL steaks were analysed by a trained beef sensory panel as well as undergoing WBSF analysis. The best coefficients of determination of cross validation (R2CV) in the current study were for textural traits (WBSF = 0.22; stringiness = 0.22; crumbly texture = 0.41: all 3 models calibrated using 48 h post-mortem spectra), and some sensory flavour traits (fatty mouthfeel = 0.23; fatty after-effect = 0.28: both calibrated using 49 h post-mortem spectra). The results of this experiment indicate that VISNIR spectroscopy has potential to predict a range of sensory traits (particularly textural traits) with an acceptable level of accuracy at specific post-mortem times.


Subject(s)
Muscle, Skeletal/chemistry , Red Meat/analysis , Sensation , Spectrophotometry, Infrared/veterinary , Animals , Cattle , Humans , Male
18.
Foods ; 8(11)2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31652829

ABSTRACT

The potential of visible-near-infrared (Vis-NIR) spectroscopy to predict physico-chemical quality traits in 368 samples of bovine musculus longissimus thoracis et lumborum (LTL) was evaluated. A fibre-optic probe was applied on the exposed surface of the bovine carcass for the collection of spectra, including the neck and rump (1 h and 2 h post-mortem and after quartering, i.e., 24 h and 25 h post-mortem) and the boned-out LTL muscle (48 h and 49 h post-mortem). In parallel, reference analysis for physico-chemical parameters of beef quality including ultimate pH, colour (L, a*, b*), cook loss and drip loss was conducted using standard laboratory methods. Partial least-squares (PLS) regression models were used to correlate the spectral information with reference quality parameters of beef muscle. Different mathematical pre-treatments and their combinations were applied to improve the model accuracy, which was evaluated on the basis of the coefficient of determination of calibration (R2C) and cross-validation (R2CV) and root-mean-square error of calibration (RMSEC) and cross-validation (RMSECV). Reliable cross-validation models were achieved for ultimate pH (R2CV: 0.91 (quartering, 24 h) and R2CV: 0.96 (LTL muscle, 48 h)) and drip loss (R2CV: 0.82 (quartering, 24 h) and R2CV: 0.99 (LTL muscle, 48 h)) with lower RMSECV values. The results show the potential of Vis-NIR spectroscopy for online prediction of certain quality parameters of beef over different time periods.

19.
PeerJ ; 6: e5376, 2018.
Article in English | MEDLINE | ID: mdl-30123708

ABSTRACT

BACKGROUND: Use of traditional methods for determining meat spoilage is quite laborious and time consuming. Therefore, alternative approaches are needed that can predict the spoilage of meat in a rapid, non-invasive and more elaborative way. In this regard, the spectroscopic techniques have shown their potential for predicting the microbial spoilage of meat-based products. Consequently, the present work was aimed to demonstrate the competence of Fourier transform infrared spectroscopy (FTIR) to detect spoilage in chicken fillets stored under aerobic refrigerated conditions. METHODS: This study was conducted under controlled randomized design (CRD). Chicken samples were stored for 8 days at 4 + 0.5 °C and FTIR spectra were collected at regular intervals (after every 2 days) directly from the sample surface using attenuated total reflectance during the study period. Additionally, total plate count (TPC), Entetobacteriaceae count, pH, CTn (Color transmittance number) color analysis, TVBN (total volatile basic nitrogen) contents, and shear force values were also measured through traditional approaches. FTIR spectral data were interpreted through principal component analysis (PCA) and partial least square (PLS) regression and compared with results of traditional methods for precise estimation of spoilage. RESULTS: Results of TPC (3.04-8.20 CFU/cm2), Entetobacteriaceae counts (2.39-6.33 CFU/cm2), pH (4.65-7.05), color (57.00-142.00 CTn), TVBN values (6.72-33.60 mg/100 g) and shear force values (8.99-39.23) were measured through traditional methods and compared with FTIR spectral data. Analysis of variance (ANOVA) was applied on data obtained through microbial and quality analyses and results revealed significant changes (P < 0.05) in the values of microbial load and quality parameters of chicken fillets during the storage. FTIR spectra were collected and PCA was applied to illuminate the wavenumbers potentially correlated to the spoilage of meat. PLS regression analysis permitted the estimates of microbial spoilage and quality parameters from the spectra with a fit of R2 = 0.66 for TPC, R2 = 0.52 for Entetobacteriaceae numbers and R2 = 0.56 for TVBN analysis of stored broiler meat. DISCUSSION: PLS regression was applied for quantitative interpretation of spectra, which allowed estimates of microbial loads on chicken surfaces during the storage period. The results suggest that FTIR spectra retain information regarding the spoilage of poultry meat. CONCLUSION: The present work concluded that FTIR spectroscopy coupled with multivariate analysis can be successfully used for quantitative determination of poultry meat spoilage.

20.
PeerJ ; 6: e4802, 2018.
Article in English | MEDLINE | ID: mdl-29844965

ABSTRACT

Azo dyes are one of the largest classes of synthetic dyes being used in textile industries. It has been reported that 15-50% of these dyes find their way into wastewater that is often used for irrigation purpose in developing countries. The effect of azo dyes contamination on soil nitrogen (N) has been studied previously. However, how does the azo dye contamination affect soil carbon (C) cycling is unknown. Therefore, we assessed the effect of azo dye contamination (Reactive Black 5, 30 mg kg-1 dry soil), bacteria that decolorize this dye and dye + bacteria in the presence or absence of maize leaf litter on soil respiration, soil inorganic N and microbial biomass. We found that dye contamination did not induce any change in soil respiration, soil microbial biomass or soil inorganic N availability (P > 0.05). Litter evidently increased soil respiration. Our study concludes that the Reactive Black 5 azo dye (applied in low amount, i.e., 30 mg kg-1 dry soil) contamination did not modify organic matter decomposition, N mineralization and microbial biomass in a silty loam soil.

SELECTION OF CITATIONS
SEARCH DETAIL
...