Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Toxics ; 11(12)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38133375

ABSTRACT

The implementation of nanotechnology in pulmonary delivery systems might result in better and more specific therapy. Therefore, a nano-sized drug carrier should be toxicologically inert and not induce adverse effects. We aimed to investigate the responses of a polymer nano drug carrier, a lysine poly-hydroxyethyl methacrylate nanoparticle (NP) [Lys-p(HEMA)], loaded with formoterol, both in vitro and in vivo in an ovalbumin (OVA) asthma model. The successfully synthesized nanodrug formulation showed an expectedly steady in vitro release profile. There was no sign of in vitro toxicity, and the 16HBE and THP-1 cell lines remained vital after exposure to the nanocarrier, both loaded and unloaded. In an experimental asthma model (Balb/c mice) of ovalbumin sensitization and challenge, the nanocarrier loaded and unloaded with formoterol was tested in a preventive strategy and compared to treatment with the drug in a normal formulation. The airway hyperresponsiveness (AHR) and pulmonary inflammation in the bronchoalveolar lavage (BAL), both cellular and biochemical, were assessed. The application of formoterol as a regular drug and the unloaded and formoterol-loaded NP in OVA-sensitized mice followed by a saline challenge was not different from the control group. Yet, both the NP formulation and the normal drug application led to a more deteriorated lung function and increased lung inflammation in the OVA-sensitized and -challenged mice, showing that the use of the p(HEMA) nanocarrier loaded with formoterol needs more extensive testing before it can be applied in clinical settings.

2.
Cell Biochem Biophys ; 80(4): 689-698, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36180658

ABSTRACT

During mitosis, phosphorylation and dephosphorylation of lamins triggers the nuclear envelope disassembly/assembly. However, it hasn't been known whether lamin proteins undergo any modification other than phosphorylation during the cell cycle. Glycosylation of lamin proteins is one of the less studied post-translational modification. Glycosylation and phosphorylation compete for the same positions and interplay between two modifications generate a post-translational code in the cell. Based on this, we hypothesized that glycosylation of lamin A/C protein may be important in the regulation of the structural organization of the nuclear lamina during interphase and mitosis. We analysed the glycan units of lamin A/C protein in lung carcinoma cells synchronized at G2/M and S phases via CapLC-ESI-MS/MS. Besides, the outermost glycan units were determined using lectin blotting and gold-conjugated antibody and lectin staining. TEM studies also allowed us to observe the localization of glycosylated lamin A/C protein. With this study, we determined that lamin A/C protein shows O-glycosylation at G2/M and S phases of the cell cycle. In addition to O-GlcNAcylation and O-GalNAcylation, lamin A/C is found to be contain Gal, Fuc, Man, and Sia sugars at G2/M and S phases for the first time. Having found the glycan units of the lamin A/C protein suggests that glycosylation might have a role in the nuclear organization during the cell cycle.


Subject(s)
Lamin Type A , Lamin Type B , Cell Cycle , Gold , Humans , Lamin Type A/metabolism , Lamin Type B/metabolism , Lectins/metabolism , Mitosis , Nuclear Proteins/metabolism , Phosphorylation , S Phase , Sugars , Tandem Mass Spectrometry
3.
Biol Bull ; 242(2): 118-126, 2022 04.
Article in English | MEDLINE | ID: mdl-35580027

ABSTRACT

Glycans are expressed as conjugates of glycoproteins, glycolipids, and proteoglycans. The huge diversity of glycans on glycoconjugates contributes to many biological processes, from glycan-based molecular recognition to developmental events, such as regeneration in the nervous system. Echinoderms, which have a close phylogenetic relationship with chordates, are an important group of marine invertebrates for body regeneration. Although many major roles of glycans on glycoconjugates are known, their role in the glycosylation profile of the nervous system in sea urchins is poorly understood. In this study, we aimed to determine the terminal glycan profile by lectin blotting and to quantify sialic acids by the capillary liquid chromatography electrospray ionization tandem mass spectrometry system in the nervous tissue of the sea urchin Paracentrotus lividus. We determined the N-acetyl-D-glucosamine, mannose, and sialic acids (mainly α2,3 linked) by lectin blotting and five types of sialic acids (N-glycolylneuraminic acid, N-acetylneuraminic acid, 9-O-acetyl-N-alycolylneuraminic acid, 5-N-acetyl-9-O-acetyl-N-acetylneuraminic acid, and di-O-acetylated-N-alycolylneuraminic acid) by capillary liquid chromatography electrospray ionization tandem mass spectrometry. This potential first description of the terminal glycan profile in the nervous system of the sea urchin is expected to help us understand its role in nervous system development and regeneration.


Subject(s)
Lectins , Paracentrotus , Animals , Glycoconjugates , Mass Spectrometry , Paracentrotus/chemistry , Phylogeny , Polysaccharides/chemistry , Sialic Acids/chemistry
4.
Arch Microbiol ; 203(7): 4101-4112, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34057546

ABSTRACT

Para-toluic acid, a major pollutant in industrial wastewater, is hazardous to human health. It has been demonstrated that Gram-negative bacteria are among the most effective degraders of para-toluic acid. In this study, the ability of Comamonas testosteroni strain 3a2, isolated from a petrochemical industry wastewater, to degrade para-toluic acid was investigated. The effect of different carbon (glucose and ethylene glycol) and nitrogen sources (urea, yeast extract, peptone, NaNO3, NH4NO3) on the biodegradation of para-toluic acid by the isolate 3a2 was evaluated. Furthermore, ring hydroxylating dioxygenase genes were amplified by PCR and their expression was evaluated during the biodegradation of para-toluic acid. The results indicated that strain 3a2 was able to degrade up to 1000 mg/L of para-toluic acid after 14 h. The highest degradation yield was recorded in the presence of yeast extract as nitrogen source. However, the formation of terephthalic acid and phthalic acid was noted during para-toluic acid degradation by the isolate 3a2. Toluate 1,2-dioxygenase, terephthalate 1,2 dioxygenase, and phthalate 4,5 dioxygenase genes were detected in the genomic DNA of 3a2. The induction of ring hydroxylating dioxygenase genes was proportional to the concentration of each hydrocarbon. This study showed that the isolate 3a2 can produce terephthalate and phthalate during the para-toluic acid biodegradation, which were also degraded after 24 h.


Subject(s)
Comamonas testosteroni , Dioxygenases , Environmental Pollutants , Biodegradation, Environmental , Comamonas testosteroni/enzymology , Comamonas testosteroni/genetics , Dioxygenases/genetics , Environmental Pollutants/metabolism , Phthalic Acids/metabolism
5.
BMC Genomics ; 22(1): 282, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33874895

ABSTRACT

BACKGROUND: Cytidine monophospho-n-acetylneuraminic acid hydroxylase (CMAH) gene associated with blood groups in cats encodes CMAH enzyme that converts Neu5Ac to Neu5Gc. Although variations in CMAH gene of pedigree cats have been revealed, the presence/lack of them in non-pedigree stray cats is unknown. Therefore, the present study aimed to investigate the variations in CMAH gene and the quantity of Neu5Ac and Neu5Gc on erythrocytes of non-pedigree stray cats (n:12) living in Izmir, Turkey. Also, the frequency of blood types was determined in 76 stray cats including 12 cats that were used for CMAH and Neu5A/Neu5Gc analysis. RESULTS: In total, 14 SNPs were detected in 5'UTR as well as in exon 2, 4, 9, 10, 11 and 12 of CMAH gene. Among these SNPs, -495 C > T in 5'UTR was detected for the first time as heterozygous in type A and AB cats, and homozygous and heterozygous in type B cats. The remaining 13 that have been detected in previous studies were also found as homozygous or heterozygous. Both Neu5Gc and Neu5Ac were detected in type A and AB cats. In type B cats, only Neu5Ac was detected. Among two type AB cats, the level of Neu5Ac was found higher in cat carrying heterozygous form (T/C) of 1392T > C. The prevalence of type B cats (67.1 %) was higher than others. CONCLUSIONS: The presence of a new SNP as well as previous SNPs indicates that more variations can be found in stray cats with a more comprehensive study in the future. Also, the high prevalence of type B cats demonstrates the possible risk of neonatal isoerythrolysis among stray cats living in Izmir, Turkey.


Subject(s)
Blood Group Antigens , Cytidine , Animals , Cats , Mixed Function Oxygenases , Turkey
6.
Biochim Biophys Acta Proteins Proteom ; 1869(2): 140559, 2021 02.
Article in English | MEDLINE | ID: mdl-33130090

ABSTRACT

Reelin (400 kDa) is an extracellular matrix glycoprotein that is a key regulator of the many significant biological processes including the brain formation, cell aggregation, and dendrite formation. The glycosylation contributes to the nature of the protein through folding, localization and trafficking, solubility, antigenicity, biological activity, and half-life. Although reelin is to be known as a glycoprotein, the knowledge of its glycosylation is very limited. In this study, we aimed to characterize the terminal glycan profile of reelin by lectin blotting and monosaccharide analysis of glycan chains by capillary liquid chromatography electrospray ionization ion trap tandem mass spectrometry (CapLC-ESI-MS/MS) in SH-SY5Y neuroblastoma cell line. According to our results, reelin was detected in different protein fragments (310, 250, and 85 kDa) in addition to full-length form (400 kDa) in the cell line. The reelin glycoprotein was found to carry the ß-N-Acetylglucosamine, α-Mannose, ß-Galactose, and α-2,3 and α2,6 linked sialic acids by lectin blotting. Nevertheless, these terminal monosaccharides were found in different intensity according to reelin fragments. Besides, we purified a reelin fragment (250 kDa), and we analyzed it for their monosaccharide by CapLC-ESI-MS/MS. We found that reelin contained five types of monosaccharides, which were consisted of N-Acetylgalactosamine, N-Acetylglucosamine, Galactose, Glucose, Mannose and Sialic acid, from high to low abundance respectively. The present results provide a valuable guide for biochemical, genetic, and glycobiology based further experiments about reelin glycosylation in cancer perspective.


Subject(s)
Cell Adhesion Molecules, Neuronal/chemistry , Extracellular Matrix Proteins/chemistry , Lectins/chemistry , Monosaccharides/isolation & purification , Nerve Tissue Proteins/chemistry , Polysaccharides/isolation & purification , Serine Endopeptidases/chemistry , Cell Adhesion Molecules, Neuronal/genetics , Cell Line, Tumor , Chromatography, Liquid , Extracellular Matrix Proteins/genetics , Galactose/chemistry , Glycoproteins/chemistry , Humans , Lectins/genetics , Monosaccharides/chemistry , N-Acetylneuraminic Acid/chemistry , Nerve Tissue Proteins/genetics , Neuroblastoma/genetics , Polysaccharides/chemistry , Reelin Protein , Serine Endopeptidases/genetics , Spectrometry, Mass, Electrospray Ionization
7.
Environ Technol ; 42(13): 2031-2045, 2021 May.
Article in English | MEDLINE | ID: mdl-31752596

ABSTRACT

Biodegradation is a cost-effective process commonly used to eliminate many xenobiotic hydrocarbons such as diesel oils. However, their hydrophobic character reduces the biodegradation efficiency. In order to overcome this hurdle, kurstakins isolated from Bacillus thuringiensis strain 7SA were used as emulsifying agents. The influence of kurstakin molecules on diesel oil degradation by Acinetobacter haemolyticus strain 2SA was evaluated in the presence and absence of the aforementioned lipopeptide. The degradation rates and gene expressions of alkane hydroxylases were evaluated at days 4, 10, 14 and 21. Results showed that kurstakin molecules increased the hydrophobicity of 2SA. Moreover, diesel oil degradation activities were higher in the presence of kurstakin with 29%, 35%, 29% and 23% improvement at 4th, 10th, 14th and 21st day respectively. Statistical analysis indicated that the difference between the degradation rates in the presence and absence of kurstakin was significant with p = 0.03. The detection of three different hydroxylase genes namely alkB, almA and cyp153 in 2SA genome, might have allowed more efficient degradability of alkanes. According to the real-time PCR results, cyp153 was the most induced gene during diesel oil degradation in the presence and absence of kurstakin. Yet, the three genes demonstrated higher levels of expression in the presence of kurstakin when compared to its absence. This study showed that kurstakins enhance the diesel oil biodegradation rate by increasing the hydrophobicity of 2SA. In addition to their anti-fungal activities, kurstakins can be used as biosurfactant to increase biodegradation of diesel oil.


Subject(s)
Acinetobacter , Acinetobacter/genetics , Biodegradation, Environmental , Cytochrome P-450 CYP4A/genetics , Gasoline
8.
Arch Microbiol ; 202(6): 1407-1417, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32173773

ABSTRACT

Pseudomonas spp. are the main producers of rhamnolipids. These products have applications in pharmaceuticals, cosmetics, food industry and bioremediation. The biosynthesis of rhamnolipids is influenced by nutrient composition, pH and temperature. In this study, the impact of nutrients on the expression levels of rhamnolipid synthesis genes was evaluated in P. aeruginosa ATCC 15442. Glucose and glycerol were used as carbon sources; while, NaNO3, NH4NO3 and yeast extract/peptone were employed as nitrogen sources. The effect of different concentrations of Fe2+ and Fe3+ on rhamnolipid synthesis genes was also evaluated. Highest biosurfactant production was obtained in minimal medium supplemented with glucose, NaNO3 and Fe2+. Two rhamnolipid synthesis genes, rhlA and rhlB, were amplified with PCR. CapLC ESI-Ion trap-MS/MS detected only mono-rhamnolipid Rha-C10-C10 in the extract. Although similar induction levels were recorded in the presence of 0.05 g/L iron ions, the presence of Fe2+ resulted in higher expression levels than Fe3+ at concentrations equivalent to 0.025 and 0.075 g/L.


Subject(s)
Carbon/metabolism , Glycolipids/biosynthesis , Iron/metabolism , Nitrogen/metabolism , Pseudomonas aeruginosa/metabolism , Glucose/metabolism , Glycerol/metabolism , Ions/metabolism , Nitrates/metabolism , Peptones/metabolism , Pseudomonas aeruginosa/genetics , Surface-Active Agents/chemistry , Surface-Active Agents/metabolism , Tandem Mass Spectrometry
9.
Mol Reprod Dev ; 84(5): 401-407, 2017 05.
Article in English | MEDLINE | ID: mdl-28295836

ABSTRACT

Sea urchin eggs are surrounded by a carbohydrate-rich layer, termed the jelly coat, that consists of polysaccharides and glycoproteins. In the present study, we describe two mass spectrometric strategies to characterize the N-glycosylation of the Paracentrotus lividus egg jelly coat, which has an alecithal-type extracellular matrix like mammalian eggs. Egg jelly was isolated, lyophilized, and dialyzed, followed by peptide N-glycosidase F (PNGase-F) treatment to release N-glycans from their protein chain. These N-glycans were then derivatized by permethylation reaction, and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and capillary liquid chromatography electrospray ionization-ion trap tandem mass spectroscopy (CapLC ESI-Ion trap-MS/MS). N-glycans in the egg jelly coat glycoproteins were indicated by sodiated molecules at m/z 1579.8, 1783.9, 1988.0, 2192.0, and 2397.1 for permethylated oligosaccharides on MALDI-TOF MS. Fragmentation and structural characterization of these oligosaccharides were performed by ESI-Ion trap MS/MS. Then, MALDI-TOF-MS and ESI-Ion trap-MS/MS spectra were interpreted using the GlycoWorkbench software suite, a tool for building, displaying, and profiling glycan masses, to identify the original oligosaccharide structures. The oligosaccharides of the isolated egg jelly coat were mainly of the high mannose type.


Subject(s)
Extracellular Matrix/metabolism , Ovum/metabolism , Paracentrotus/metabolism , Polysaccharides/metabolism , Animals , Chromatography, Liquid , Extracellular Matrix/chemistry , Female , Ovum/chemistry , Paracentrotus/chemistry , Polysaccharides/chemistry , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
10.
Invert Neurosci ; 16(3): 8, 2016 09.
Article in English | MEDLINE | ID: mdl-27341820

ABSTRACT

Glycoconjugates have various functions in differentiation, development, aging and in all aspects of normal functioning of organisms. The reason for increased research on this topic is that glycoconjugates locate mostly on the cell surface and play crucial biological roles in the nervous system including brain development, synaptic plasticity, learning, and memory. Considering their roles in the nervous system, information about their existence in the insect nervous system is rather sparse. Therefore, in order to detect monosaccharide content of N- and O-glycans, we carried out capLC-ESI-MS/MS analysis to determine the concentration changes of glucose, mannose, galactose, N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GalNAc), fucose, xylose, arabinose, and ribose monosaccharides in the nervous system of Bombyx mori during development and aging processes. In addition to LC-MS, lectin blotting was done to detect quantitative changes in N- and O-glycans. Developmental stages were selected as 3rd (the youngest sample), 5th (young) larval instar, motionless prepupa (the oldest sample), and pupa (adult development). Derivatization of monosaccharides was performed with a solution of PMP agent and analyzed with capLC-ESI-MS/MS. For lectin blotting, determination of glycan types was carried out with Galanthus nivalis agglutinin and Peanut agglutinin lectins. In all stages, the most abundant monosaccharide was glucose. Although all monosaccharides were present most abundantly in the youngest stage (3rd instar), they are generally reduced gradually during the aging process. It was observed that amounts of monosaccharides increased again in the pupa stage. According to lectin blotting, N- and O-linked glycoproteins expressions were different and there were some specific glycoprotein expression differences between stages. These findings suggest that the glycosylation state of proteins in the nervous system changes during development and aging in insects in a similar fashion to that reported for vertebrates.


Subject(s)
Bombyx/growth & development , Bombyx/metabolism , Central Nervous System/growth & development , Glycoconjugates/analysis , Neurogenesis/physiology , Animals , Central Nervous System/metabolism , Glycosylation , Monosaccharides/analysis
11.
J Ocul Pharmacol Ther ; 31(1): 43-50, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25285465

ABSTRACT

PURPOSE: The purpose of this experiment was to investigate the possible toxic effects of Nepafenac, a nonsteroidal anti-inflammatory molecule, after its intravitreal application in various concentrations. METHODS: Forty pigmented rabbits were randomly divided into 4 groups, each including 10 rabbits. The active ingredient Nepafenac was prepared to be applied in different doses, for intravitreal use. Under topical anesthesia, following pupil dilatation, 0.3, 0.5, 0.75, and 1.5 mg doses of Nepafenac was applied intravitreally into the right eye. In each rabbit, the right eye was considered to be the study group. Saline was injected intravitreally into the left eye of each rabbit, and these eyes were considered to be the control group. Immediately after the injection and at the 1st, 4th, and 8th weeks, fundus examination by indirect ophthalmoscopy and intraocular pressure measurement were conducted. Furthermore, electroretinographic (ERG) recordings were taken at the 4th and 8th weeks. At the end of the 8th week, eyes of the surviving 26 rabbits were enucleated, and then animals were sacrificed. Following necessary fixation procedures, histopathological investigations were conducted by using a light and electron microscope. In the histological cross sections, differences between the eyes with injection and the control group were evaluated, and total retinal thickness, inner nuclear layer thickness, and outer nuclear layer thickness were measured. RESULTS: No pathology was found by clinical examination of either group. In the photopic and scotopic full-field ERG, conducted before the injection and in the 4th and 8th weeks after the injection, no statistically significant difference was determined between the study group and the control group. In the histological evaluation of the preparations, there were no statistically significant differences in the retina thickness of control and study groups. In the electron microscopic examinations, there were no toxicity findings in the eyes with injection. CONCLUSIONS: Our data show that intravitreal application of 0.3, 0.5, 0.75, and 1.5 mg doses of Nepafenac active substance is nontoxic to the rabbit retina.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Benzeneacetamides/administration & dosage , Benzeneacetamides/toxicity , Phenylacetates/administration & dosage , Phenylacetates/toxicity , Retina/drug effects , Animals , Dose-Response Relationship, Drug , Electroretinography/methods , Fundus Oculi , Intraocular Pressure/drug effects , Intravitreal Injections , Ophthalmoscopy/methods , Rabbits , Retina/cytology , Retina/pathology
12.
Mol Reprod Dev ; 82(2): 115-22, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25530172

ABSTRACT

Sialic acid is a terminal sugar of carbohydrate chains that participates in numerous biological events. Recent studies have explored the mechanism of carbohydrate-mediated fertilisation to understand the biochemistry of fertilisation, although the type and quantity of sialic acid and the role of sialic acid during fertilisation remain unknown. Echinoderm fertilisation in particular has been studied extensively, yet our understanding of the mechanisms of carbohydrate-mediated fertilisation and the role of sialic acid remains incomplete. In this study, we characterised the sialic acid types in the egg jelly coat of the sea urchin, Paracentrotus lividus, using the sensitive analytical system capillary liquid chromatography electro-spray ionisation tandem mass spectrometry (capLC-ESI-MS/MS). First, we isolated the egg jelly coat and released its sialic acid using acid treatment. These sialic acids were derivatised with 1,2-diamino-4,5-methylenediaoxy-benzene dihydrochloride (DMB) and injected into the capLC-ESI-MS/MS system. When compared with standards, we identified twelve different types of sialic acid according to their retention times and collision-induced dissociation fragments. The mass spectral data revealed that Neu5Gc, Neu5Ac, Neu5GcS, and Neu5Gc9Ac were the predominant types of sialic acid in the sea urchin jelly coat, with Neu5Gc being the most abundant. Other types of sialic acid detected included Neu5AcS, Neu5Gc7,9Ac2, Neu5,9Ac2, Neu5Gc8Ac, Neu5Gc7Ac, Neu5,7Ac2, Neu5Gc8,9Ac2, and Neu5,8Ac2. The types and quantities of sialic acid that we detected in the egg jelly coat will aid in the discovery of new sialic acid-specific receptors on the sperm membrane.


Subject(s)
Extracellular Matrix/chemistry , Fertilization/physiology , N-Acetylneuraminic Acid/analysis , Ovum/chemistry , Paracentrotus/chemistry , Animals , Chromatography, Liquid , N-Acetylneuraminic Acid/classification , Paracentrotus/physiology , Phenylenediamines , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
13.
Fish Shellfish Immunol ; 36(1): 181-6, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24215912

ABSTRACT

Coelomocytes are considered to be immune effectors of sea urchins. Coelomocytes are the freely circulating cells in the body fluid contained in echinoderm coelom and mediate the cellular defence responses to immune challenges by phagocytosis, encapsulation, cytotoxicity and the production of antimicrobial agents. Coelomocytes have the ability to recognize self from non-self. Considering that sialic acids play important roles in immunity, we determined the presence of sialic acid types in coelomocytes of Paracentrotus lividus. Homogenized coelomocytes were kept in 2 M aqueous acetic acid at 80 °C for 3 h to liberate sialic acids. Sialic acids were determined by derivatization with 1,2-diamino-4,5-methylenediaoxy-benzene dihydrochloride (DMB) followed by capillary liquid-chromatography-electrospray ionization/tandem mass spectrometry (CapLC-ESI-MS/MS). Standard sialic acids; Neu5Ac, Neu5Gc, KDN and bovine submaxillary mucin showing a variety of sialic acids were used to confirm sialic acids types. We found ten different types of sialic acids (Neu5Gc, Neu5Ac, Neu5Gc9Ac, Neu5Gc8Ac, Neu5,9Ac2, Neu5,7Ac2, Neu5,8Ac2, Neu5,7,9Ac3, Neu5Gc7,9Ac2, Neu5Gc7Ac) isolated in limited amounts from total coelomocyte population. Neu5Gc type of sialic acids in coelomocytes was the most abundant type sialic acid when compared with other types. This is the first report on the presence of sialic acid types in coelomocytes of P. lividus using CapLC-ESI-MS/MS-Ion Trap system (Capillary Liquid Chromatography-Electrospray Ionization/Tandem Mass Spectrometry).


Subject(s)
Immune System/chemistry , Paracentrotus/chemistry , Sialic Acids/analysis , Animals , Chromatography, Liquid , Immune System/cytology , Immune System/immunology , Paracentrotus/cytology , Paracentrotus/immunology , Sialic Acids/chemistry , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...