Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-344002

ABSTRACT

SARS-CoV-2, the virus responsible for COVID-19, causes widespread damage in the lungs in the setting of an overzealous immune response whose origin remains unclear. We present a scalable, propagable, personalized, cost-effective adult stem cell-derived human lung organoid model that is complete with both proximal and distal airway epithelia. Monolayers derived from adult lung organoids (ALOs), primary airway cells, or hiPSC-derived alveolar type-II (AT2) pneumocytes were infected with SARS-CoV-2 to create in vitro lung models of COVID-19. Infected ALO-monolayers best recapitulated the transcriptomic signatures in diverse cohorts of COVID-19 patient-derived respiratory samples. The airway (proximal) cells were critical for sustained viral infection, whereas distal alveolar differentiation (AT2[->]AT1) was critical for mounting the overzealous host immune response in fatal disease; ALO monolayers with well-mixed proximodistal airway components recapitulated both. Findings validate a human lung model of COVID-19, which can be immediately utilized to investigate COVID-19 pathogenesis and vet new therapies and vaccines. GRAPHIC ABSTRACT O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=176 SRC="FIGDIR/small/344002v4_ufig1.gif" ALT="Figure 1"> View larger version (52K): org.highwire.dtl.DTLVardef@1d1507aorg.highwire.dtl.DTLVardef@faa17forg.highwire.dtl.DTLVardef@80ceb1org.highwire.dtl.DTLVardef@81d61c_HPS_FORMAT_FIGEXP M_FIG C_FIG HIGHLIGHTSO_LIHuman lung organoids with mixed proximodistal epithelia are created C_LIO_LIProximal airway cells are critical for viral infectivity C_LIO_LIDistal alveolar cells are important for emulating host response C_LIO_LIBoth are required for the overzealous response in severe COVID-19 C_LI IN BRIEFAn integrated stem cell-based disease modeling and computational approach demonstrate how both proximal airway epithelium is critical for SARS-CoV-2 infectivity, but distal differentiation of alveolar pneumocytes is critical for simulating the overzealous host response in fatal COVID-19.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-305698

ABSTRACT

We sought to define the host immune response, a.k.a, the "cytokine storm" that has been implicated in fatal COVID-19 using an AI-based approach. Over 45,000 transcriptomic datasets of viral pandemics were analyzed to extract a 166-gene signature using ACE2 as a seed gene; ACE2 was rationalized because it encodes the receptor that facilitates the entry of SARS-CoV-2 (the virus that causes COVID-19) into host cells. Surprisingly, this 166-gene signature was conserved in all viral pandemics, including COVID-19, and a subset of 20-genes classified disease severity, inspiring the nomenclatures ViP and severe-ViP signatures, respectively. The ViP signatures pinpointed a paradoxical phenomenon wherein lung epithelial and myeloid cells mount an IL15 cytokine storm, and epithelial and NK cell senescence and apoptosis determines severity/fatality. Precise therapeutic goals were formulated and subsequently validated in high-dose SARS-CoV-2-challenged hamsters using neutralizing antibodies that abrogate SARS-CoV-2*ACE2 engagement or a directly acting antiviral agent, EIDD-2801. IL15/IL15RA were elevated in the lungs of patients with fatal disease, and plasma levels of the cytokine tracked with disease severity. Thus, the ViP signatures provide a quantitative and qualitative framework for titrating the immune response in viral pandemics and may serve as a powerful unbiased tool to rapidly assess disease severity and vet candidate drugs. One Sentence SummaryThe host immune response in COVID-19. PANEL: RESEARCH IN CONTEXTO_ST_ABSEvidence before this studyC_ST_ABSThe SARS-CoV-2 pandemic has inspired many groups to find innovative methodologies that can help us understand the host immune response to the virus; unchecked proportions of such immune response have been implicated in fatality. We searched GEO and ArrayExpress that provided many publicly available gene expression data that objectively measure the host immune response in diverse conditions. However, challenges remain in identifying a set of host response events that are common to every condition. There are no studies that provide a reproducible assessment of prognosticators of disease severity, the host response, and therapeutic goals. Consequently, therapeutic trials for COVID-19 have seen many more misses than hits. This work used multiple (> 45,000) gene expression datasets from GEO and ArrayExpress and analyzed them using an unbiased computational approach that relies upon fundamentals of gene expression patterns and mathematical precision when assessing them. Added value of this studyThis work identifies a signature that is surprisingly conserved in all viral pandemics, including Covid-19, inspiring the nomenclature ViP-signature. A subset of 20-genes classified disease severity in respiratory pandemics. The ViP signatures pinpointed the nature and source of the cytokine storm mounted by the host. They also helped formulate precise therapeutic goals and rationalized the repurposing of FDA-approved drugs. Implications of all the available evidenceThe ViP signatures provide a quantitative and qualitative framework for assessing the immune response in viral pandemics when creating pre-clinical models; they serve as a powerful unbiased tool to rapidly assess disease severity and vet candidate drugs.

SELECTION OF CITATIONS
SEARCH DETAIL
...