Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(22): 15249-15260, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38737970

ABSTRACT

Functionalizing single-walled carbon nanotubes (SWCNT) with different chemical functional groups directly enhances their chemical adhesion and dispersion in viscous polymeric resins such as polydimethylsiloxane (PDMS). Nevertheless, the ideal surface polarity (hydrophilic or hydrophobic) for SWCNT to foster stronger chemical bonding with PDMS remains uncertain. This investigation delves into the impact of enhanced SWCNT dispersion within PDMS on the surface mechanical characteristics of this flexible composite system. We use carboxylic acid-functionalized SWCNT (COOH-SWCNT) and silane-functionalized SWCNT (sily-SWCNT), recognized for their hydrophilic and hydrophobic surface polarities, respectively, as reinforcing agents at ultra-low weight percentage loadings: 0.05 wt%, 0.5 wt%, and 1 wt%. We perform quasi-static nanoindentation analysis employing a Berkovich tip to probe the localized mechanical behavior of PDMS-SWCNT films at an indentation depth of 1 µm. Plastic deformation within the samples, denoted as plastic work (Wp), as well as the elastic modulus (E), hardness (H), and contact stiffness (Sc) of the composites are examined from the force-displacement curves to elucidate the enhancement in the surface mechanical attributes of the composite films.

2.
Sci Rep ; 14(1): 4487, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38396000

ABSTRACT

This study focuses on enhancing the mechanical properties of thin, soft, free-standing films via a layer-by-layer (LBL) fabrication process called LBL-FP. Soft polymer nanocomposite (PNC) thin films, combining polydimethylsiloxane (PDMS) and single-walled carbon nanotubes (SWCNT) at ultra-low loadings using a unique bottom-up LBL-FP, are examined. Two different structures of layered composites, (i) LBL PNCs- Layered composites with alternating layers of PDMS and SWCNT, (ii) Bulk PNCs- Layered composites with SWCNT dispersed in the bulk of PDMS, are comparatively investigated for their structural and mechanical properties. Silane-functionalized SWCNT strengthens the chemical bonding with PDMS, improving adhesion and dispersion. Mechanical analysis using nanoindentation, delamination, and dynamic analysis highlights the advantages of LBL PNCs with alternating layers of PDMS and SWCNT. Notably, LBL PNC (0.5 wt%) exhibits significant improvements, such as 2.6X increased nanoindentation resistance, 3X improved viscoelasticity, and (2-5)X enhanced tensile properties in comparison with neat PDMS. Due to this, LBL PNCs offer potential for soft, lightweight applications like wearables, electromagnetic interference shielding materials, and strain sensors while advancing composite thin film mechanics. The study emphasizes using a stacked architecture to produce PDMS-SWCNT multilayered PNCs with improved mechanics utilizing ultra-low concentrations of SWCNT. This first-of-its-kind stack design facilitates possibilities for lightweight composites utilizing less fillers. The LBL assembly involves the stacking of alternating layers of different materials, each contributing specific properties to enhance the overall strength and toughness of the structure.

3.
Phys Rev Lett ; 131(18): 186301, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37977617

ABSTRACT

We propose a new formula that extracts the quantum Hall conductance from a single (2+1)D gapped wave function. The formula applies to general many-body systems that conserve particle number, and is based on the concept of modular flow, i.e., unitary dynamics generated from the entanglement structure of the wave function. The formula is shown to satisfy all formal properties of the Hall conductance: it is odd under time reversal and reflection, even under charge conjugation, universal and topologically rigid in the thermodynamic limit. Further evidence for relating the formula to the Hall conductance is obtained from conformal field theory arguments. Finally, we numerically check the formula by applying it to a noninteracting Chern band where excellent agreement is obtained.

4.
Polymers (Basel) ; 14(6)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35335558

ABSTRACT

When silicon solar cells are used in the novel lightweight photovoltaic (PV) modules using a sandwich design with polycarbonate sheets on both the front and back sides of the cells, they are much more prone to impact loading, which may be prevalent in four-season countries during wintertime. Yet, the lightweight PV modules have recently become an increasingly important development, especially for certain segments of the renewable energy markets all over the world-such as exhibition halls, factories, supermarkets, farms, etc.-including in countries with harsh hailstorms during winter. Even in the standard PV module design using glass as the front sheet, the silicon cells inside remain fragile and may be prone to impact loading. This impact loading has been widely known to lead to cracks in the silicon solar cells that over an extended period of time may significantly degrade performance (output power). In our group's previous work, a 3D helicoidally architected fiber-based polymer composite (enabled by an electrospinning-based additive manufacturing methodology) was found to exhibit excellent impact resistance-absorbing much of the energy from the impact load-such that the silicon solar cells encapsulated on both sides by this material breaks only at significantly higher impact load/energy, compared to when a standard, commercial PV encapsulant material was used. In the present study, we aim to use numerical simulation and modeling to enhance our understanding of the stress distribution and evolution during impact loading on such helicoidally arranged fiber-based composite materials, and thus the damage evolution and mechanisms. This could further aid the implementation of the lightweight PV technology for the unique market needs, especially in countries with extreme winter seasons.

5.
Nanomaterials (Basel) ; 12(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35159654

ABSTRACT

Nanolaminates are extensively studied due to their unique properties, such as impact resistance, high fracture toughness, high strength, and resistance to radiation damage. Varieties of nanolaminates are being fabricated to achieve high strength and fracture toughness. In this study, one such nanolaminate fabricated through accumulative roll bonding (Cu(16)/Nb(16) ARB nanolaminate, where 16 nm is the layer thickness) was used as a test material. Cu(16)/Nb(16) ARB nanolaminate exhibits crystallographic anisotropy due to the existence of distinct interfaces along the rolling direction (RD) and the transverse direction (TD). Nanoindentation was executed using a Berkovich tip, with the main axis oriented either along TD or RD of the Cu(16)/Nb(16) ARB nanolaminate. Subsequently, height profiles were obtained along the main axis of the Berkovich indent for both TD and RD using scanning probe microscopy (SPM), which was later used to estimate the pile-up along the RD and TD. The RD exhibited more pile-up than the TD due to the anisotropy of the Cu(16)/Nb(16) ARB interface and the material plasticity along the TD and RD. An axisymmetric 2D finite element analysis (FEA) was also performed to compare/validate nanoindentation data, such as load vs. displacement curves and pile-up. The FEA simulated load vs. displacement curves matched relatively well with the experimentally generated load-displacement curves, while qualitative agreement was found between the simulated pile-up data and the experimentally obtained pile-up data. The authors believe that pile-up characterization during indentation is of great importance to documenting anisotropy in nanolaminates.

6.
Polymers (Basel) ; 13(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34641131

ABSTRACT

Lightweight photovoltaics (PV) modules are important for certain segments of the renewable energy markets-such as exhibition halls, factories, supermarkets, farms, etc. However, lightweight silicon-based PV modules have their own set of technical challenges or concerns. One of them, which is the subject of this paper, is the lack of impact resistance, especially against hailstorms in deep winter in countries with four seasons. Even if the front sheet can be made sufficiently strong and impact-resistant, the silicon cells inside remain fragile and very prone to impact loading. This leads to cracks that significantly degrade performance (output power) over time. A 3D helicoidally architected fiber-based polymer composite has recently been found to exhibit excellent impact resistance, inspired by the multi-hierarchical internal structures of the mantis shrimp's dactyl clubs. In previous work, our group demonstrated that via electrospinning-based additive manufacturing methodologies, weak polymer material constituents could be made to exhibit significantly improved toughness and impact properties. In this study, we demonstrate the use of 3D architected fiber-based polymer composites to protect the silicon solar cells by absorbing impact energy. The absorbed energy is equivalent to the energy that would impact the solar cells during hailstorms. We have shown that silicon cells placed under such 3D architected polymer layers break at substantially higher impact load/energy (compared to those placed under standard PV encapsulation polymer material). This could lead to the development of novel PV encapsulant materials for the next generation of lightweight PV modules and technology with excellent impact resistance.

7.
Phys Rev Lett ; 126(10): 100604, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33784134

ABSTRACT

Strongly disordered systems in the many-body localized (MBL) phase can exhibit ground state order in highly excited eigenstates. The interplay between localization, symmetry, and topology has led to the characterization of a broad landscape of MBL phases ranging from spin glasses and time crystals to symmetry protected topological phases. Understanding the nature of phase transitions between these different forms of eigenstate order remains an essential open question. Here, we conjecture that no direct transition between distinct MBL orders can occur in one dimension; rather, an ergodic phase always intervenes. Motivated by recent advances in Rydberg-atom-based quantum simulation, we propose an experimental protocol where the intervening ergodic phase can be diagnosed via the dynamics of local observables.

8.
Polymers (Basel) ; 12(10)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076527

ABSTRACT

In this study, we demonstrate the use of parallel plate far field electrospinning (pp-FFES) based manufacturing system for the fabrication of polyacrylonitrile (PAN) fiber reinforced polyvinyl alcohol (PVA) strong polymer thin films (PVA SPTF). Parallel plate far field electrospinning (also known as the gap electrospinning) is generally used to produce uniaxially aligned fibers between the two parallel collector plates. In the first step, a disc containing PVA/H2O solution/bath (matrix material) was placed in between the two parallel plate collectors. Next, a layer of uniaxially aligned sub-micron PAN fibers (filler material) produced by pp-FFES was directly collected/embedded in the PVA/H2O solution by bringing the fibers in contact with the matrix. Next, the disc containing the matrix solution was rotated at 45∘ angular offset and then the next layer of the uniaxial fibers was collected/stacked on top of the previous layer with now 45∘ rotation between the two layers. This process was continued progressively by stacking the layers of uniaxially aligned arrays of fibers at 45∘ angular offsets, until a periodic pattern was achieved. In total, 13 such layers were laid within the matrix solution to make a helicoidal geometry with three pitches. The results demonstrate that embedding the helicoidal PAN fibers within the PVA enables efficient load transfer during high rate loading such as impact. The fabricated PVA strong polymer thin films with helicoidally arranged PAN fiber reinforcement (PVA SPTF-HA) show specific tensile strength 5 MPa · cm3· g-1 and can sustain specific impact energy (8 ± 0.9) mJ · cm3· g-1, which is superior to that of the pure PVA thin film (PVA TF) and PVA SPTF with randomly oriented PAN fiber reinforcement (PVA SPTF-RO). The novel fabrication methodology enables the further capability to produce even further smaller fibers (sub-micron down to even nanometer scales) and by the virtue of its layer-by-layer processing (in the manner of an additive manufacturing methodology) allowing further modulation of interfacial and inter-fiber adherence with the matrix materials. These parameters allow greater control and tunability of impact performances of the synthetic materials for various applications from army combat wear to sports and biomedical/wearable applications.

9.
Polymers (Basel) ; 12(5)2020 May 10.
Article in English | MEDLINE | ID: mdl-32397622

ABSTRACT

This study used melt-electrospinning writing to fabricate three-dimensional fiber constructs by embedding them in a polyvinyl alcohol (PVA) matrix to obtain thin composite films. Fourier transform infrared spectroscopy (FTIR) and dynamic scanning calorimetry (DSC) were used to demonstrate an interaction between the polycaprolactone (PCL) fibrous phase and the PVA matrix phase. Following this, the mechanical deformation behavior of the composite was investigated, and the effect of reinforcement with three-dimensional fibrous constructs was illustrated. The specific strength of the composite was found to be five times higher than the specific strength of the neat PVA matrix. Additionally, the specific toughness of the composite was determined to be roughly four times higher than the specific toughness determined for the neat PVA matrix. These results demonstrate the potential of using melt-electrospinning writing for producing three-dimensional fibrous constructs for composite reinforcement purposes.

10.
Mater Sci Eng C Mater Biol Appl ; 108: 110505, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31923996

ABSTRACT

Electrospinning is one of the most investigated methods used to produce polymeric fiber scaffolds that mimic the morphology of native extracellular matrix. These structures have been extensively studied in the context of scaffolds for tissue regeneration. However, the compactness of materials obtained by traditional electrospinning, collected as two-dimensional non-woven scaffolds, can limit cell infiltration and tissue ingrowth. In addition, for applications in smooth muscle tissue engineering, highly elastic scaffolds capable of withstanding cyclic mechanical strains without suffering significant permanent deformations are preferred. In order to address these challenges, we report the fabrication of microscale 3D helically coiled scaffolds (referred as 3D-HCS) by wet-electrospinning method, a modification of the traditional electrospinning process in which a coagulation bath (non-solvent system for the electrospun material) is used as the collector. The present study, for the first time, successfully demonstrates the feasibility of using this method to produce various architectures of 3D helically coiled scaffolds (HCS) from segmented copolyester of poly (butylene succinate-co-dilinoleic succinate) (PBS-DLS), a thermoplastic elastomer. We examined the role of process parameters and propose a mechanism for the HCS formation. Fabricated 3D-HCS showed high specific surface area, high porosity, and good elasticity. Further, the marked increase in cell proliferation on 3D-HCS confirmed the suitability of these materials as scaffolds for soft tissue engineering.


Subject(s)
Butylene Glycols/chemistry , Elastomers , Electrochemistry/methods , Polyesters/chemistry , Polymers/chemistry , Tissue Scaffolds , Animals , Cell Line , Cell Proliferation , Cell Survival , Elasticity , Imaging, Three-Dimensional , Mice , Microscopy, Electron, Scanning , Porosity , Stress, Mechanical , Surface Properties , Tissue Engineering/methods , X-Ray Microtomography
11.
Materials (Basel) ; 10(9)2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28902168

ABSTRACT

We employed a novel picoindenter (PI)/scanning electron microscopy (SEM) technique to measure the pull-off force of an individual electrospun poly(vinylidene fluoride) (PVDF) fibers. Individual fibers were deposited over a channel in a custom-designed silicon substrate, which was then attached to a picoindenter. The picoindenter was then positioned firmly on the sample stage of the SEM. The picoindenter tip laterally pushed individual fibers to measure the force required to detach it from the surface of substrate. SEM was used to visualize and document the process. The measured pull-off force ranged between 5.8 ± 0.2 µN to ~17.8 ± 0.2 µN for individual fibers with average diameter ranging from 0.8 to 2.3 µm. Thus, this study, a first of its kind, demonstrates the use of a picoindenter to measure the pull-off force of a single micro/nanofiber.

12.
Macromol Rapid Commun ; 36(14): 1368-73, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25965973

ABSTRACT

Temperature-triggered switchable nanofibrous membranes are successfully fabricated from a mixture of cellulose acetate (CA) and poly(N-isopropylacrylamide) (PNIPAM) by employing a single-step direct electrospinning process. These hybrid CA-PNIPAM membranes demonstrate the ability to switch between two wetting states viz. superhydrophilic to highly hydrophobic states upon increasing the temperature. At room temperature (23 °C) CA-PNIPAM nanofibrous membranes exhibit superhydrophilicity, while at elevated temperature (40 °C) the membranes demonstrate hydrophobicity with a static water contact angle greater than 130°. Furthermore, the results here demonstrate that the degree of hydrophobicity of the membranes can be controlled by adjusting the ratio of PNIPAM in the CA-PNIPAM mixture.


Subject(s)
Acrylic Resins/chemistry , Cellulose/analogs & derivatives , Cellulose/chemistry , Nanofibers/chemistry , Surface Properties , Temperature , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...