Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Neural Netw Learn Syst ; 30(8): 2369-2382, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30582559

ABSTRACT

Graph-based methods are known to be successful in many machine learning and pattern classification tasks. These methods consider semistructured data as graphs where nodes correspond to primitives (parts, interest points, and segments) and edges characterize the relationships between these primitives. However, these nonvectorial graph data cannot be straightforwardly plugged into off-the-shelf machine learning algorithms without a preliminary step of-explicit/implicit-graph vectorization and embedding. This embedding process should be resilient to intraclass graph variations while being highly discriminant. In this paper, we propose a novel high-order stochastic graphlet embedding that maps graphs into vector spaces. Our main contribution includes a new stochastic search procedure that efficiently parses a given graph and extracts/samples unlimitedly high-order graphlets. We consider these graphlets, with increasing orders, to model local primitives as well as their increasingly complex interactions. In order to build our graph representation, we measure the distribution of these graphlets into a given graph, using particular hash functions that efficiently assign sampled graphlets into isomorphic sets with a very low probability of collision. When combined with maximum margin classifiers, these graphlet-based representations have a positive impact on the performance of pattern comparison and recognition as corroborated through extensive experiments using standard benchmark databases.

2.
IEEE Trans Image Process ; 26(4): 1820-1832, 2017 04.
Article in English | MEDLINE | ID: mdl-28186895

ABSTRACT

Multiple kernel learning (MKL) is a widely used technique for kernel design. Its principle consists in learning, for a given support vector classifier, the most suitable convex (or sparse) linear combination of standard elementary kernels. However, these combinations are shallow and often powerless to capture the actual similarity between highly semantic data, especially for challenging classification tasks such as image annotation. In this paper, we redefine multiple kernels using deep multi-layer networks. In this new contribution, a deep multiple kernel is recursively defined as a multi-layered combination of nonlinear activation functions, each one involves a combination of several elementary or intermediate kernels, and results into a positive semi-definite deep kernel. We propose four different frameworks in order to learn the weights of these networks: supervised, unsupervised, kernel-based semisupervised and Laplacian-based semi-supervised. When plugged into support vector machines (SVMs), the resulting deep kernel networks show clear gain, compared to several shallow kernels for the task of image annotation. Extensive experiments and analysis on the challenging ImageCLEF photo annotation benchmark, the COREL5k database and the Banana dataset validate the effectiveness of the proposed method.

3.
IEEE Trans Image Process ; 22(3): 1018-31, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23144034

ABSTRACT

We contribute, through this paper, to the design of a novel variational framework able to match and recognize multiple instances of multiple reference logos in image archives. Reference logos and test images are seen as constellations of local features (interest points, regions, etc.) and matched by minimizing an energy function mixing: 1) a fidelity term that measures the quality of feature matching, 2) a neighborhood criterion that captures feature co-occurrence/geometry, and 3) a regularization term that controls the smoothness of the matching solution. We also introduce a detection/recognition procedure and study its theoretical consistency. Finally, we show the validity of our method through extensive experiments on the challenging MICC-Logos dataset. Our method overtakes, by 20%, baseline as well as state-of-the-art matching/recognition procedures.


Subject(s)
Artificial Intelligence , Documentation/methods , Emblems and Insignia/classification , Image Interpretation, Computer-Assisted/methods , Information Storage and Retrieval/methods , Pattern Recognition, Automated/methods , Subtraction Technique , Algorithms , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
4.
IEEE Trans Pattern Anal Mach Intell ; 33(4): 699-708, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21079276

ABSTRACT

Kernels are functions designed in order to capture resemblance between data and they are used in a wide range of machine learning techniques, including support vector machines (SVMs). In their standard version, commonly used kernels such as the Gaussian one show reasonably good performance in many classification and recognition tasks in computer vision, bioinformatics, and text processing. In the particular task of object recognition, the main deficiency of standard kernels such as the convolution one resides in the lack in capturing the right geometric structure of objects while also being invariant. We focus in this paper on object recognition using a new type of kernel referred to as "context dependent." Objects, seen as constellations of interest points, are matched by minimizing an energy function mixing 1) a fidelity term which measures the quality of feature matching, 2) a neighborhood criterion which captures the object geometry, and 3) a regularization term. We will show that the fixed point of this energy is a context-dependent kernel which is also positive definite. Experiments conducted on object recognition show that when plugging our kernel into SVMs, we clearly outperform SVMs with context-free kernels.


Subject(s)
Algorithms , Pattern Recognition, Automated/methods , Artificial Intelligence , Cluster Analysis , Computing Methodologies
SELECTION OF CITATIONS
SEARCH DETAIL
...