Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Muscle Nerve ; 69(1): 93-98, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37577753

ABSTRACT

INTRODUCTION/AIMS: Delandistrogene moxeparvovec is indicated in the United States for the treatment of ambulatory pediatric patients aged 4 through 5 years with Duchenne muscular dystrophy (DMD) with a confirmed mutation in the DMD gene. Long-term delandistrogene moxeparvovec microdystrophin protein (a shortened dystrophin that retains key functional domains of the wild-type protein) expression may positively alter disease progression in patients with DMD. We evaluated long-term safety and functional outcomes of delandistrogene moxeparvovec in patients with DMD. METHODS: An open-label, phase 1/2a, nonrandomized controlled trial (Study 101; NCT03375164) enrolled ambulatory males, ≥4 to <8 years old, with DMD. Patients received a single intravenous infusion (2.0 × 1014 vg/kg by supercoiled quantitative polymerase chain reaction) of delandistrogene moxeparvovec and prednisone (1 mg/kg/day) 1 day before to 30 days after treatment. The primary endpoint was safety. Functional outcomes were change from baseline in North Star Ambulatory Assessment (NSAA) and timed function tests. RESULTS: Four patients (mean age, 5.1 years) were enrolled. There were 18 treatment-related adverse events; all occurred within 70 days posttreatment and resolved. Mean NSAA total score increased from 20.5 to 27.5, baseline to year 4, with a mean (standard deviation) change of +7.0 (2.9). Post hoc analysis demonstrated a statistically significant and clinically meaningful 9-point difference in NSAA score, relative to a propensity-score-weighted external control cohort (least-squares mean [standard error] = 9.4 [3.4]; P = .0125). DISCUSSION: Gene transfer therapy with delandistrogene moxeparvovec treatment is well tolerated, with a favorable safety profile. Functional improvements are sustained through 4 years, suggesting delandistrogene moxeparvovec may positively alter disease progression.


Subject(s)
Muscular Dystrophy, Duchenne , Child , Child, Preschool , Humans , Male , Disease Progression , Genetic Therapy/adverse effects , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Muscular Dystrophy, Duchenne/metabolism , Prednisone/therapeutic use
2.
Sci Transl Med ; 15(727): eadh2156, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38117902

ABSTRACT

An incomplete mechanistic understanding of skeletal muscle wasting early after spinal cord injury (SCI) precludes targeted molecular interventions. Here, we demonstrated systemic wasting that also affected innervated nonparalyzed (supralesional) muscles and emerged within 1 week after experimental SCI in mice. Systemic muscle wasting caused muscle weakness, affected fast type 2 myofibers preferentially, and became exacerbated after high (T3) compared with low (T9) thoracic paraplegia, indicating lesion level-dependent ("neurogenic") mechanisms. The wasting of nonparalyzed muscle and its rapid onset and severity beyond what can be explained by disuse implied unknown systemic drivers. Muscle transcriptome and biochemical analysis revealed a glucocorticoid-mediated catabolic signature early after T3 SCI. SCI-induced systemic muscle wasting was mitigated by (i) endogenous glucocorticoid ablation (adrenalectomy) and (ii) pharmacological glucocorticoid receptor (GR) blockade and was (iii) completely prevented after T3 relative to T9 SCI by genetic muscle-specific GR deletion. These results suggest that neurogenic hypercortisolism contributes to a rapid systemic and functionally relevant muscle wasting syndrome early after paraplegic SCI in mice.


Subject(s)
Glucocorticoids , Spinal Cord Injuries , Mice , Animals , Spinal Cord Injuries/pathology , Muscle, Skeletal/metabolism , Spinal Cord/metabolism
3.
Neurol Genet ; 9(5): e200093, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37588275

ABSTRACT

Background and Objectives: Pathogenic variants in the valosin-containing protein (VCP) gene cause a phenotypically heterogeneous disorder that includes myopathy, motor neuron disease, Paget disease of the bone, frontotemporal dementia, and parkinsonism termed multisystem proteinopathy. This hallmark pleiotropy makes the classification of novel VCP variants challenging. This retrospective study describes and assesses the effect of 19 novel or nonpreviously clinically characterized VCP variants identified in 28 patients (26 unrelated families) in the retrospective VCP International Multicenter Study. Methods: A 6-item clinical score was developed to evaluate the phenotypic level of evidence to support the pathogenicity of the novel variants. Each item is allocated a value, a score ranging from 0.5 to 5.5 points. A receiver-operating characteristic curve was used to identify a cutoff value of 3 to consider a variant as high likelihood disease associated. The scoring system results were confronted with results of in vitro ATPase activity assays and with in silico analysis. Results: All variants were missense, except for one small deletion-insertion, 18 led to amino acid changes within the N and D1 domains, and 13 increased the enzymatic activity. The clinical score coincided with the functional studies in 17 of 19 variants and with the in silico analysis in 12 of 19. For 12 variants, the 3 predictive tools agreed, and for 7 variants, the predictive tools disagreed. The pooled data supported the pathogenicity of 13 of 19 novel VCP variants identified in the study. Discussion: This study provides data to support pathogenicity of 14 of 19 novel VCP variants and provides guidance for clinicians in the evaluation of novel variants in the VCP gene.

4.
J Cachexia Sarcopenia Muscle ; 14(5): 2204-2215, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37553101

ABSTRACT

BACKGROUND: Sarcopenia, an age-related loss of muscle mass, is a critical factor that affects the health of the older adults. The SOD1KO mouse is deficient of Cu/Zn superoxide dismutase, used as an accelerated aging model. We previously showed that NT-3 improves muscle fibre size by activating the mTOR pathway, suggesting a potential for attenuating age-related muscle loss. This study assessed the therapeutic efficacy of AAV1.NT-3 in this accelerated aging model. METHODS: Twelve 6 months old SOD1KO mice were injected intramuscularly with a 1 × 1011 vg dose of AAV1.tMCK.NT-3, and 13 age-matched SOD1KO mice were used as controls. The treatment effect was evaluated using treadmill, rotarod and gait analyses as well as histological studies assessing changes in muscle fibre, and fibre type switch, in tibialis anterior, gastrocnemius, and triceps muscles, and myelin thickness by calculating G ratio in sciatic and tibial nerves. Molecular studies involved qPCR experiments to analyse the expression levels of mitochondrial and glycolysis markers and western blot experiments to assess the activity of mTORC1 pathway. RESULTS: Treatment resulted in a 36% (154.9 vs. 114.1; P < 0.0001) and 76% increase (154.3 vs. 87.6; P < 0.0001) in meters ran, with treadmill test at 3 and 6 months post gene delivery. In addition, the treated cohort stayed on rotarod 30% (52.7 s vs. 40.4 s; P = 0.0095) and 54% (50.4 s vs. 32.7 s; P = 0.0007) longer, compared with untreated counterparts at 3 and 6 months post injection. Gait analysis, performed at endpoint, showed that stride width was normalized to wild type levels (29.3 mm) by an 11% decrease, compared with untreated cohort (28.6 mm vs. 32.1 mm; P = 0.0014). Compared with wild-type, SOD1KO mice showed 9.4% and 11.4% fibre size decrease in tibialis anterior and gastrocnemius muscles, respectively, which were normalized to wild type levels with treatment. Fibre diameter increase was observed prominently in FTG fibre type. G ratio analysis revealed hypomyelination in the tibial (0.721) and sciatic (0.676) nerves of SOD1KO model, which was reversed in the NT-3 cohort (0.646 and 0.634, respectively). Fibre size increase correlated with the increase in the p-S6 and p-4E-BP1 levels, and in the glycolysis markers in tibialis anterior. Alterations observed in the mitochondrial markers were not rescued with treatment. Overall, response to NT-3 was subdued in gastrocnemius muscle. CONCLUSIONS: This study shows that AAV1.NT-3 gene therapy protected SOD1KO mouse from accelerated aging effects functionally and histologically. We further confirmed that NT-3 has potential to activate the mTOR and glycolytic pathways in muscle.

5.
Front Cell Dev Biol ; 11: 1167762, 2023.
Article in English | MEDLINE | ID: mdl-37497476

ABSTRACT

Introduction: Delandistrogene moxeparvovec (SRP-9001) is an investigational gene transfer therapy designed for targeted expression of SRP-9001 dystrophin protein, a shortened dystrophin retaining key functional domains of the wild-type protein. Methods: This Phase 2, double-blind, two-part (48 weeks per part) crossover study (SRP-9001-102 [Study 102]; NCT03769116) evaluated delandistrogene moxeparvovec in patients, aged ≥4 to <8 years with Duchenne muscular dystrophy. Primary endpoints (Part 1) were change from baseline (CFBL) in SRP-9001 dystrophin expression (Week 12), by Western blot, and in North Star Ambulatory Assessment (NSAA) score (Week 48). Safety assessments included treatment-related adverse events (TRAEs). Patients were randomized and stratified by age to placebo (n = 21) or delandistrogene moxeparvovec (n = 20) and crossed over for Part 2. Results: SRP-9001 dystrophin expression was achieved in all patients: mean CFBL to Week 12 was 23.82% and 39.64% normal in Parts 1 and 2, respectively. In Part 1, CFBL to Week 48 in NSAA score (least-squares mean, LSM [standard error]) was +1.7 (0.6) with treatment versus +0.9 (0.6) for placebo; p = 0.37. Disparity in baseline motor function between groups likely confounded these results. In 4- to 5-year-olds with matched baseline motor function, CFBL to Week 48 in NSAA scores was significantly different (+2.5 points; p = 0.0172), but not significantly different in 6-to-7-year-olds with imbalanced baseline motor function (-0.7 points; p = 0.5384). For patients treated with delandistrogene moxeparvovec in Part 2, CFBL to Week 48 in NSAA score was +1.3 (2.7), whereas for those treated in Part 1, NSAA scores were maintained. As all patients in Part 2 were exposed to treatment, results were compared with a propensity-score-weighted external control (EC) cohort. The LSM difference in NSAA score between the Part 2 treated group and EC cohort was statistically significant (+2.0 points; p = 0.0009). The most common TRAEs were vomiting, decreased appetite, and nausea. Most occurred within the first 90 days and all resolved. Discussion: Results indicate robust expression of SRP-9001 dystrophin and overall stabilization in NSAA up to 2 years post-treatment. Differences in NSAA between groups in Part 1 were not significant for the overall population, likely because cohorts were stratified only by age, and other critical prognostic factors were not well matched at baseline.

6.
Aging (Albany NY) ; 15(5): 1306-1329, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36897179

ABSTRACT

Sarcopenia is progressive loss of muscle mass and strength, occurring during normal aging with significant consequences on the quality of life for elderly. Neurotrophin 3 (NT-3) is an important autocrine factor supporting Schwann cell survival and differentiation and stimulating axon regeneration and myelination. NT-3 is involved in the maintenance of neuromuscular junction (NMJ) integrity, restoration of impaired radial growth of muscle fibers through activation of the Akt/mTOR pathway. We tested the efficacy of NT-3 gene transfer therapy in wild type (WT)-aged C57BL/6 mice, a model for natural aging and sarcopenia, via intramuscular injection 1 × 1011 vg AAV1.tMCK.NT-3, at 18 months of age. The treatment efficacy was assessed at 6 months post-injection using run to exhaustion and rotarod tests, in vivo muscle contractility assay, and histopathological studies of the peripheral nervous system, including NMJ connectivity and muscle. AAV1.NT-3 gene therapy in WT-aged C57BL/6 mice resulted in functional and in vivo muscle physiology improvements, supported by quantitative histology from muscle, peripheral nerves and NMJ. Hindlimb and forelimb muscles in the untreated cohort showed the presence of a muscle- and sex-dependent remodeling and fiber size decrease with aging, which was normalized toward values obtained from 10 months old WT mice with treatment. The molecular studies assessing the NT-3 effect on the oxidative state of distal hindlimb muscles, accompanied by western blot analyses for mTORC1 activation were in accordance with the histological findings. Considering the cost and quality of life to the individual, we believe our study has important implications for management of age-related sarcopenia.


Subject(s)
Sarcopenia , Mice , Animals , Sarcopenia/genetics , Sarcopenia/prevention & control , Muscle, Skeletal/metabolism , Axons/pathology , Quality of Life , Mice, Inbred C57BL , Nerve Regeneration , Aging/physiology , Genetic Therapy
7.
Gene Ther ; 29(3-4): 127-137, 2022 04.
Article in English | MEDLINE | ID: mdl-33542455

ABSTRACT

X-linked Charcot-Marie-Tooth neuropathy (CMTX) is caused by mutations in the gene encoding Gap Junction Protein Beta-1 (GJB1)/Connexin32 (Cx32) in Schwann cells. Neurotrophin-3 (NT-3) is an important autocrine factor supporting Schwann cell survival and differentiation and stimulating axon regeneration and myelination. Improvements in these parameters have been shown previously in a CMT1 model, TremblerJ mouse, with NT-3 gene transfer therapy. For this study, scAAV1.tMCK.NT-3 was delivered to the gastrocnemius muscle of 3-month-old Cx32 knockout (KO) mice. Measurable levels of NT-3 were found in the serum at 6-month post gene delivery. The outcome measures included functional, electrophysiological and histological assessments. At 9-months of age, NT-3 treated mice showed no functional decline with normalized compound muscle action potential amplitudes. Myelin thickness and nerve conduction velocity significantly improved compared with untreated cohort. A normalization toward age-matched wildtype histopathological parameters included increased number of Schmidt-Lanterman incisures, and muscle fiber diameter. Collectively, these findings suggest a translational application to CMTX1.


Subject(s)
Axons , Charcot-Marie-Tooth Disease , Animals , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Charcot-Marie-Tooth Disease/therapy , Connexins/genetics , Connexins/metabolism , Genetic Therapy , Humans , Mice , Mice, Knockout , Mutation , Nerve Regeneration , Schwann Cells/metabolism
8.
Brain Commun ; 3(4): fcab252, 2021.
Article in English | MEDLINE | ID: mdl-34755111

ABSTRACT

Glycyl-tRNA synthetase mutations are associated to the Charcot-Marie-Tooth disease type-2D. The GarsP278KY/+ model for Charcot-Marie-Tooth disease type-2D is known best for its early onset severe neuropathic phenotype with findings including reduced axon size, slow conduction velocities and abnormal neuromuscular junction. Muscle involvement remains largely unexamined. We tested the efficacy of neurotrophin 3 gene transfer therapy in two Gars mutants with severe (GarsP278KY/+ ) and milder (GarsΔETAQ/+ ) phenotypes via intramuscular injection of adeno-associated virus setoype-1, triple tandem muscle creatine kinase promoter, neurotrophin 3 (AAV1.tMCK.NT-3) at 1 × 1011 vg dose. In the GarsP278KY/+ mice, the treatment efficacy was assessed at 12 weeks post-injection using rotarod test, electrophysiology and detailed quantitative histopathological studies of the peripheral nervous system including neuromuscular junction and muscle. Neurotrophin 3 gene transfer therapy in GarsP278KY/+ mice resulted in significant functional and electrophysiological improvements, supported with increases in myelin thickness and improvements in the denervated status of neuromuscular junctions as well as increases in muscle fibre size along with attenuation of myopathic changes. Improvements in the milder phenotype GarsΔETAQ/+ was less pronounced. Furthermore, oxidative enzyme histochemistry in muscles from Gars mutants revealed alterations in the content and distribution of oxidative enzymes with increased expression levels of Pgc1a. Cox1, Cox3 and Atp5d transcripts were significantly decreased suggesting that the muscle phenotype might be related to mitochondrial dysfunction. Neurotrophin 3 gene therapy attenuated these abnormalities in the muscle. This study shows that neurotrophin 3 gene transfer therapy has disease modifying effect in a mouse model for Charcot-Marie-Tooth disease type-2D, leading to meaningful improvements in peripheral nerve myelination and neuromuscular junction integrity as well as in a unique myopathic process, associated with mitochondria dysfunction, all in combination contributing to functional outcome. Based on the multiple biological effects of this versatile molecule, we predict neurotrophin 3 has the potential to be beneficial in other aminoacyl-tRNA synthetase-linked Charcot-Marie-Tooth disease subtypes.

9.
Neurodegener Dis Manag ; 11(5): 411-429, 2021 10.
Article in English | MEDLINE | ID: mdl-34472379

ABSTRACT

Limb-girdle muscular dystrophies (LGMDs) represent a major group of muscle disorders. Treatment is sorely needed and currently expanding based on safety and efficacy adopting principles of single-dosing gene therapy for monogenic autosomal recessive disorders. Gene therapy has made in-roads for LGMD and this review describes progress that has been achieved for these conditions. This review first provides a background on the definition and classification of LGMDs. The major effort focuses on progress in LGMD gene therapy, from experimental studies to clinical trials. The disorders discussed include the LGMDs where the most work has been done including calpainopathies (LGMD2A/R1), dysferlinopathies (LGMD2B/R2) and sarcoglycanopathies (LGMD2C/R5, LGMD2D/R3, LGMD2E/R4). Early success in clinical trials provides a template to move the field forward and potentially apply emerging technology like CRISPR/Cas9 that may enhance the scope and efficacy of gene therapy applied to patient care.


Lay abstract Limb-girdle muscular dystrophy is a term that is applied to a group of relatively rare forms of muscular dystrophy. The term 'LGMD' was introduced in the 1950's, but there were no strict rules for defining the condition. This changed as a result of the 229th European Neuromuscular Center International Workshop in 2017 providing a clear definition and classification discussed in this article. Limb-girdle muscular dystrophy is now recognized as a genetic muscle disease with an elevated serum creatine kinase and dystrophic changes on muscle histology. Most treatments up to now rely on supportive measures for heart and lungs and assisting the physical limitations. Medications have not proven to be beneficial to stop progression of disease. This article focuses on new innovations of treatment that target the effected gene and the use special methods to replace the abnormal gene.


Subject(s)
Muscular Dystrophies, Limb-Girdle , Sarcoglycanopathies , Humans , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/therapy
10.
Mol Ther Methods Clin Dev ; 22: 401-414, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34514031

ABSTRACT

Limb girdle muscular dystrophy (LGMD) 2A/R1, caused by mutations in the CAPN3 gene and CAPN3 loss of function, is known to play a role in disease pathogenicity. In this study, AAVrh74.tMCK.CAPN3 was delivered systemically to two different age groups of CAPN3 knockout (KO) mice; each group included two treatment cohorts receiving low (1.17 × 1014 vg/kg) and high (2.35 × 1014 vg/kg) doses of the vector and untreated controls. Treatment efficacy was tested 20 weeks after gene delivery using functional (treadmill), physiological (in vivo muscle contractility assay), and histopathological outcomes. AAV.CAPN3 gene therapy resulted in significant, robust improvements in functional outcomes and muscle physiology at low and high doses in both age groups. Histological analyses of skeletal muscle showed remodeling of muscle, a switch to fatigue-resistant oxidative fibers in females, and fiber size increases in both sexes. Safety studies revealed no organ tissue abnormalities; specifically, there was no histopathological evidence of cardiotoxicity. These results show that CAPN3 gene replacement therapy improved the phenotype in the CAPN3 KO mouse model at both doses independent of age at the time of vector administration. The improvements were supported by an absence of cardiotoxicity, showing the efficacy and safety of the AAV.CAPN3 vector as a potential gene therapy for LGMDR1.

11.
Clin Nephrol ; 96(3): 175-179, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34085635

ABSTRACT

IgG4-related disease is an immune-mediated systemic inflammatory condition characterized by tissue infiltration of IgG4-positive plasma cells and elevated serum IgG4 concentrations. Peripheral neuropathy is an atypical manifestation of this disease. We describe an unusual case of vasculitic neuropathy in a patient with IgG4-related kidney disease. A 55-year-old woman presented with right leg weakness progressing to bilateral leg weakness, pain and numbness of the legs, and impaired gait. She was previously evaluated for weight loss and anemia with a CT scan of the abdomen due to concern for malignancy. Abnormal enhancement of the kidneys was seen, and laboratory work-up and kidney biopsy were consistent with IgG4-related disease. Myeloperoxidase-antineutrophil cytoplasmic antibodies were also positive. In combination with the patient's asymmetric leg weakness and painful neuropathy, this raised concern for vasculitis. Sural nerve biopsy confirmed vasculitic neuropathy. Recent studies have demonstrated an overlap in the clinical characteristics of IgG4-related disease and the anti-neutrophil cytoplasmic antibody-associated vasculitides, which are known to cause vasculitic neuropathy. Clinicians should recognize this association, and IgG4-related disease should be considered in the differential diagnosis in patients with peripheral neuropathy in the right clinical context.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Immunoglobulin G4-Related Disease , Peripheral Nervous System Diseases , Female , Humans , Kidney , Middle Aged , Peripheral Nervous System Diseases/diagnosis , Peripheral Nervous System Diseases/etiology , Peroxidase
12.
JAMA Neurol ; 77(9): 1122-1131, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32539076

ABSTRACT

Importance: Micro-dystrophin gene transfer shows promise for treating patients with Duchenne muscular dystrophy (DMD) using recombinant adeno-associated virus serotype rh74 (rAAVrh74) and codon-optimized human micro-dystrophin driven by a skeletal and cardiac muscle-specific promoter with enhanced cardiac expression (MHCK7). Objective: To identify the 1-year safety and tolerability of intravenous rAAVrh74.MHCK7.micro-dystrophin in patients with DMD. Design, Setting, and Participants: This open-label, phase 1/2a nonrandomized controlled trial was conducted at the Nationwide Children's Hospital in Columbus, Ohio. It began on November 2, 2017, with a planned duration of follow-up of 3 years, ending in March 2021. The first 4 patients who met eligibility criteria were enrolled, consisting of ambulatory male children with DMD without preexisting AAVrh74 antibodies and a stable corticosteroid dose (≥12 weeks). Interventions: A single dose of 2.0 × 1014 vg/kg rAAVrh74.MHCK7.micro-dystrophin was infused through a peripheral limb vein. Daily prednisolone, 1 mg/kg, started 1 day before gene delivery (30-day taper after infusion). Main Outcomes and Measures: Safety was the primary outcome. Secondary outcomes included micro-dystrophin expression by Western blot and immunohistochemistry. Functional outcomes measured by North Star Ambulatory Assessment (NSAA) and serum creatine kinase were exploratory outcomes. Results: Four patients were included (mean [SD] age at enrollment, 4.8 [1.0] years). All adverse events (n = 53) were considered mild (33 [62%]) or moderate (20 [38%]), and no serious adverse events occurred. Eighteen adverse events were considered treatment related, the most common of which was vomiting (9 of 18 events [50%]). Three patients had transiently elevated γ-glutamyltransferase, which resolved with corticosteroids. At 12 weeks, immunohistochemistry of gastrocnemius muscle biopsy specimens revealed robust transgene expression in all patients, with a mean of 81.2% of muscle fibers expressing micro-dystrophin with a mean intensity of 96% at the sarcolemma. Western blot showed a mean expression of 74.3% without fat or fibrosis adjustment and 95.8% with adjustment. All patients had confirmed vector transduction and showed functional improvement of NSAA scores and reduced creatine kinase levels (posttreatment vs baseline) that were maintained for 1 year. Conclusions and Relevance: This trial showed rAAVrh74.MHCK7.micro-dystrophin to be well tolerated and have minimal adverse events; the safe delivery of micro-dystrophin transgene; the robust expression and correct localization of micro-dystrophin protein; and improvements in creatine kinase levels and NSAA scores. These findings suggest that rAAVrh74.MHCK7.micro-dystrophin can provide functional improvement that is greater than that observed under standard of care. Trial Registration: ClinicalTrials.gov Identifier: NCT03375164.


Subject(s)
Dystrophin , Genetic Therapy/methods , Muscular Dystrophy, Duchenne/therapy , Outcome Assessment, Health Care , Child , Child, Preschool , Dependovirus , Dystrophin/genetics , Follow-Up Studies , Gene Transfer Techniques , Genetic Therapy/adverse effects , Genetic Vectors , Humans , Male , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Pilot Projects
13.
Brain Res ; 1727: 146533, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31669284

ABSTRACT

The molecular pathogenesis underlying Charcot-Marie-Tooth (CMT) neuropathy subtypes is becoming increasingly variable and identification of common approaches for treatment, independently of the disease causing gene defect, is therefore much desirable. Gene therapy approach from the clinical translational view point is particularly challenging for the most common "demyelinating" CMT1 subtypes, caused by primary Schwann cell genetic defects. Studies have shown that impaired regenerative capacity of distal axons is major contributing factor to distal axonal loss in primary Schwann cell genetic defects and neurotrophin 3 (NT-3) improves impaired regeneration in CMT1 mouse models. This review surveys the evidence supporting the rationale for AAV1.NT-3 surrogate gene therapy to improve nerve regeneration in CMT1A. The translational process, from proof of principal studies to the design of the phase I/IIa trial evaluating scAAV1.tMCK.NTF3 gene therapy for treatment of CMT1A is summarized.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/therapy , Genetic Therapy , Nerve Growth Factors/genetics , Nerve Regeneration/genetics , Animals , Axons/pathology , Charcot-Marie-Tooth Disease/pathology , Disease Models, Animal , Mice , Schwann Cells/pathology
14.
J Neuromuscul Dis ; 6(4): 467-473, 2019.
Article in English | MEDLINE | ID: mdl-31609695

ABSTRACT

BACKGROUND: The phenotypic spectrum of the skeletal muscle voltage-gated sodium channel gene (SCN4A) mutations has been expanding dramatically with advancements in genetic testing. Previously only known to cause autosomal dominant myotonia or periodic paralysis, now recessive mutations have been found causing congenital myopathies and congenital myasthenic syndromes. CASE PRESENTATION: A 27-year-old woman who was born with Arnold-Chiari malformation, hydrocephalus, high-arched palate, bilateral hip dysplasia, and severe scoliosis presented for evaluation of episodic muscle stiffness and weakness. Electrodiagnostic studies revealed myopathy and widespread myotonia. Muscle histopathology showed marked fiber size variability, type I fiber predominance with minimal scattered necrosis and regeneration which was typical of a congenital myopathy with an additional finding of a lobulated structural pattern in type I fibers. Sequential individual gene testing revealed a novel de novo heterozygous c.2386 C > G, p.Leu796Val missense mutation in the SCN4A gene. DISCUSSION: To the best of our knowledge, this is the first report of a dominant, heterozygous mutation in SCN4A causing a complex phenotype of congenital myopathy and myotonia with multiple congenital anomalies and unique muscle pathology findings. This case is another addition to the ever expanding phenotype of SCN4A mutations.


Subject(s)
Muscular Diseases/genetics , Mutation/genetics , Myotonia Congenita/genetics , NAV1.4 Voltage-Gated Sodium Channel/genetics , Adult , Female , Genetic Testing , Heterozygote , Humans , Muscle, Skeletal/physiopathology , Myotonia Congenita/diagnosis , Pedigree , Phenotype
15.
Medicine (Baltimore) ; 98(26): e15858, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31261494

ABSTRACT

This analysis aims to describe the outcomes of two nonambulatory patients with Duchenne muscular dystrophy (DMD) who participated in two clinical studies. The two consecutive trials of eteplirsen (studies 201 and 202) were conducted in patients with DMD (N = 12) and confirmed genetic mutations amenable to exon 51 skipping.In study 201, 12 patients were randomized to receive once-weekly, double-blind intravenous infusions of eteplirsen 30 or 50 mg/kg or placebo for 24 weeks; patients then received open-label eteplirsen during weeks 25 through 28. All 12 patients continued onto open-label extension study 202 and received long-term treatment with eteplirsen. We compared cardiac, pulmonary, and upper limb function and dystrophin production in the nonambulatory twin patients versus the 10 ambulatory patients through 240 combined treatment weeks.Ten study patients remained ambulatory through both studies, while the identical twin patients both experienced early, rapid loss of ambulation. The twin patients had greater disease severity at baseline (6-minute walk test [6MWT], 330 and 256 m) versus the other patients (n = 10; 6MWT range, 341-418 m). They maintained cardiac and upper limb function through combined week 240, with outcomes similar to those of the patients who remained ambulatory. Dystrophin production was confirmed following eteplirsen treatment.Despite the loss of ambulation, other markers of disease progression remained relatively stable in the eteplirsen-treated twin patients and were similar to those of the ambulatory patients.


Subject(s)
Morpholinos/therapeutic use , Muscular Dystrophy, Duchenne/drug therapy , Child , Disease Progression , Diseases in Twins , Double-Blind Method , Dystrophin/genetics , Dystrophin/metabolism , Humans , Male , Morpholinos/adverse effects , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/physiopathology , RNA Processing, Post-Transcriptional/drug effects , Severity of Illness Index , Treatment Outcome , Walk Test , Walking
16.
Hum Gene Ther ; 30(7): 794-801, 2019 07.
Article in English | MEDLINE | ID: mdl-30838895

ABSTRACT

In a previous limb-girdle muscular dystrophy type 2D (LGMD2D) clinical trial, robust alpha-sarcoglycan gene expression was confirmed following intramuscular gene (SGCA) transfer. This paved the way for first-in-human isolated limb infusion (ILI) gene transfer trial to the lower limbs. Delivery of scAAVrh74.tMCK.hSGCA via an intravascular route through the femoral artery predicted improved ambulation. This method was initially chosen to avoid safety concerns required for large systemic vascular delivery viral loads. ILI methods were adopted from the extensive chemotherapy experience for treatment of malignancies confined to the extremities. Six LGMD2D subjects were enrolled in a dose-ascending open-label clinical trial. Safety of the procedure was initially assessed in the single limb of a non-ambulant affected adult at a dose of 1 × 1012 vg/kg. Subsequently, ambulatory children (aged 8-13 years) were enrolled and dosed bilaterally with either 1 × 1012 vg/kg/limb or 3 × 1012 vg/kg/limb. The six-minute walk test (6MWT) served as the primary clinical outcome; secondary outcomes included muscle strength (maximum voluntary isometric force testing) and SGCA expression at 6 months. All ambulatory participants except one had pre- and post-treatment muscle biopsies. All four subjects biopsied had confirmed SGCA gene delivery by immunofluorescence, Western blot analysis (14-25% of normal), and vector genome copies (5.4 × 103-7.7 × 104 vg/µg). Muscle strength in the knee extensors (assessed by force generation in kilograms) showed improvement in two subjects that correlated with an increase in fiber diameter post gene delivery. Six-minute walk times decreased or remained the same. Vascular delivery of AAVrh74.tMCK.hSGCA was effective at producing SGCA protein at low doses that correlated with vector copies and local functional improvement restricted to targeted muscles. Future trials will focus on systemic administration to enable targeting of proximal muscles to maximize clinical benefit.


Subject(s)
Gene Transfer Techniques , Genetic Therapy , Genetic Vectors/genetics , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/therapy , Sarcoglycanopathies/genetics , Transgenes , Animals , Biomarkers , Child , Disease Models, Animal , Female , Gene Expression , Genetic Vectors/administration & dosage , Humans , Injections, Intramuscular , Male , Middle Aged , Muscular Dystrophies, Limb-Girdle/physiopathology , Transduction, Genetic , Treatment Outcome
17.
Elife ; 82019 02 08.
Article in English | MEDLINE | ID: mdl-30735131

ABSTRACT

Although numerous long noncoding RNAs (lncRNAs) have been identified, our understanding of their roles in mammalian physiology remains limited. Here, we investigated the physiologic function of the conserved lncRNA Norad in vivo. Deletion of Norad in mice results in genomic instability and mitochondrial dysfunction, leading to a dramatic multi-system degenerative phenotype resembling premature aging. Loss of tissue homeostasis in Norad-deficient animals is attributable to augmented activity of PUMILIO proteins, which act as post-transcriptional repressors of target mRNAs to which they bind. Norad is the preferred RNA target of PUMILIO2 (PUM2) in mouse tissues and, upon loss of Norad, PUM2 hyperactively represses key genes required for mitosis and mitochondrial function. Accordingly, enforced Pum2 expression fully phenocopies Norad deletion, resulting in rapid-onset aging-associated phenotypes. These findings provide new insights and open new lines of investigation into the roles of noncoding RNAs and RNA binding proteins in normal physiology and aging.


Subject(s)
Aging, Premature/genetics , Aging/genetics , RNA, Long Noncoding/genetics , RNA-Binding Proteins/genetics , Aging/physiology , Aging, Premature/pathology , Animals , Gene Expression Regulation/genetics , Homeostasis/genetics , Humans , Mice , Mitochondria/genetics , Mitosis/genetics , Phenotype , Transcription Factors/genetics
18.
Brain Behav ; 8(10): e01118, 2018 10.
Article in English | MEDLINE | ID: mdl-30239155

ABSTRACT

INTRODUCTION: Classic Charcot-Marie-Tooth (CMT) neuropathies including those with Schwann cell genetic defects exhibit a length-dependent process affecting the distal axon. Energy deprivation in the distal axon has been the proposed mechanism accounting for length-dependent distal axonal degeneration. We hypothesized that pyruvate, an intermediate glycolytic product, could restore nerve function, supplying lost energy to the distal axon. METHODS: To test this possibility, we supplied pyruvate to the drinking water of the Trembler-J (TrJ ) mouse and assessed efficacy based on histology, electrophysiology, and functional outcomes. Pyruvate outcomes were compared with untreated TrJ controls alone or adeno-associated virus mediated NT-3 gene therapy (AAV1.NT-3)/pyruvate combinatorial approach. RESULTS: Pyruvate supplementation resulted increased myelinated fiber (MF) densities and myelin thickness in sciatic nerves. Combining pyruvate with proven efficacy from AAV1.tMCK.NT-3 gene therapy provided additional benefits showing improved compound muscle action potential amplitudes and nerve conduction velocities compared to pyruvate alone cohort. The end point motor performance of both the pyruvate and the combinatorial therapy cohorts was better than untreated TrJ controls. In a unilateral sciatic nerve crush paradigm, pyruvate supplementation improved myelin-based outcomes in both regenerating and the contralateral uncrushed nerves. CONCLUSIONS: This proof of principle study demonstrates that exogenous pyruvate alone or as adjunct therapy in TrJ may have clinical implications and is a candidate therapy for CMT neuropathies without known treatment.


Subject(s)
Charcot-Marie-Tooth Disease/drug therapy , Myelin Sheath/drug effects , Pyruvic Acid/therapeutic use , Sciatic Nerve/drug effects , Animals , Axons/drug effects , Axons/pathology , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Disease Models, Animal , Mice , Myelin Proteins , Myelin Sheath/pathology , Pyruvic Acid/pharmacology , Schwann Cells/drug effects , Schwann Cells/pathology , Sciatic Nerve/pathology
19.
Neurology ; 90(24): e2146-e2154, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29752304

ABSTRACT

OBJECTIVE: To describe the quantification of novel dystrophin production in patients with Duchenne muscular dystrophy (DMD) after long-term treatment with eteplirsen. METHODS: Clinical study 202 was an observational, open-label extension of the randomized, controlled study 201 assessing the safety and efficacy of eteplirsen in patients with DMD with a confirmed mutation in the DMD gene amenable to correction by skipping of exon 51. Patients received once-weekly IV doses of eteplirsen 30 or 50 mg/kg. Upper extremity muscle biopsy samples were collected at combined study week 180, blinded, and assessed for dystrophin-related content by Western blot, Bioquant software measurement of dystrophin-associated immunofluorescence intensity, and percent dystrophin-positive fibers (PDPF). Results were contrasted with matched untreated biopsies from patients with DMD. Reverse transcription PCR followed by Sanger sequencing of newly formed slice junctions was used to confirm the mechanism of action of eteplirsen. RESULTS: Reverse transcription PCR analysis and sequencing of the newly formed splice junction confirmed that 100% of treated patients displayed the expected skipped exon 51 sequence. In treated patients vs untreated controls, Western blot analysis of dystrophin content demonstrated an 11.6-fold increase (p = 0.007), and PDPF analysis demonstrated a 7.4-fold increase (p < 0.001). The PDPF findings were confirmed in a re-examination of the sample (15.5-fold increase, p < 0.001). Dystrophin immunofluorescence intensity was 2.4-fold greater in treated patients than in untreated controls (p < 0.001). CONCLUSION: Taken together, the 4 assays, each based on unique evaluation mechanisms, provided evidence of eteplirsen muscle cell penetration, exon skipping, and induction of novel dystrophin expression. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence of the muscle cell penetration, exon skipping, and induction of novel dystrophin expression by eteplirsen, as confirmed by 4 assays.


Subject(s)
Dystrophin/biosynthesis , Exons/genetics , Morpholinos/therapeutic use , Muscular Dystrophy, Duchenne/drug therapy , Biopsy , Child , Humans , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Treatment Outcome
20.
Gene Ther ; 25(2): 129-138, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29523879

ABSTRACT

Neurotrophin 3 (NT-3) has well-recognized effects on peripheral nerve and Schwann cells, promoting axonal regeneration and associated myelination. In this study, we assessed the effects of AAV.NT-3 gene therapy on the oxidative state of the neurogenic muscle from the TremblerJ (Tr J ) mice at 16 weeks post-gene injection and found that the muscle fiber size increase was associated with a change in the oxidative state of muscle fibers towards normalization of the fiber type ratio seen in the wild type. NT-3-induced fiber size increase was most prominent for the fast twitch glycolytic fiber population. These changes in the Tr J muscle were accompanied by increased phosphorylation levels of 4E-BP1 and S6 proteins as evidence of mTORC1 activation. In parallel, the expression levels of the mitochondrial biogenesis regulator PGC1α, and the markers of glycolysis (HK1 and PK1) increased in the TrJ muscle. In vitro studies showed that recombinant NT-3 can directly induce Akt/mTOR pathway activation in the TrkC expressing myotubes but not in myoblasts. In addition, myogenin expression levels were increased in myotubes while p75 NTR expression was downregulated compared to myoblasts, indicating that NT-3 induced myoblast differentiation is associated with mTORC1 activation. These studies for the first time have shown that NT-3 increases muscle fiber diameter in the neurogenic muscle through direct activation of mTOR pathway and that the fiber size increase is more prominent for fast twitch glycolytic fibers.


Subject(s)
Charcot-Marie-Tooth Disease/therapy , Dependovirus/genetics , Genetic Therapy , Muscle, Skeletal/pathology , Nerve Growth Factors/genetics , TOR Serine-Threonine Kinases/metabolism , Animals , Biomarkers/metabolism , Cell Line , Charcot-Marie-Tooth Disease/metabolism , Charcot-Marie-Tooth Disease/pathology , Disease Models, Animal , Glycolysis , Mice , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...