Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Res (Camb) ; 12(5): 814-823, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37915485

ABSTRACT

Rhoifolin (ROF) is a naturally occurring flavonoid compound with diverse pharmacological and therapeutic benefits. The current investigation was designed to evaluate the curative potential of Rhoifolin (ROF) against Cisplatin (CP) induced testicular damage. Mature male albino rats (n = 48) were randomly distributed into 4 equal groups: control, CP (10 mg/kg), CP + ROF (10 mg/kg + 20 mg/kg) and ROF (20 mg/kg) supplemented group. Following 56 days of the trial, biochemical, inflammatory markers, spermatogenic, steroidogenic, hormonal, apoptotic, anti-apoptotic, and histopathological parameters were evaluated. The exposure to CP markedly (p < 0.05) lowered the activities of anti-oxidant enzymes, glutathione reductase (GSR), catalase (CAT), and glutathione peroxidase (GPx) as well as superoxide dismutase (SOD) in testicular tissues of male albino rats. Besides the levels of reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS) were considerably augmented in CP exposed rats. The administration of CP also increased the level of inflammatory cytokines i.e. IL-6, TNF-α, 1L-1ß and NF-κß as well as COX-2 activity. Additionally, a notable (p < 0.05) upsurge was observed in dead sperms count, abnormality in the tail, midpiece as well as head of sperms along with a notable decline in sperm motility in CP treated rats. Moreover, the expressions of steroidogenic enzymes were also lowered in CP administered group. The levels of follicle stimulating hormone (FSH) and plasma testosterone as well as luteinizing hormone (LH) were decreased in CP treated group. Moreover, the expression of Bax as well as Caspase-3 (apoptotic markers) were increased. On the other hand, Bcl-2 expression (anti-apoptotic marker) was reduced. Furthermore, the histopathological analysis showed that CP considerably (p < 0.05) damaged the testicular tissues. However, the administration of ROF significantly reduced the damaging effects of CP in testicular tissues. The results of our study suggested that ROF can potentially alleviate CP-induced testicular damages due to its androgenic, anti-oxidant and anti-inflammatory as well as anti-apoptotic nature.

2.
Food Chem Toxicol ; 180: 114043, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37722616

ABSTRACT

The current study was designed to evaluate the protective role of chrysoeriol against polyethylene microplastics (PE-MP) induced testicular damage. Forty eight male rats were distributed into 4 equal groups: vehicle control, PE-MP administrated, PE-MP + chrysoeriol co-administrated and only chrysoeriol supplemented group. The administration of PE-MP significantly reduced the activities of anti-oxidant enzymes, i.e., glutathione peroxidase, catalase, glutathione reductase and superoxide dismutase, whereas the levels of reactive oxygen species and malondialdehyde were increased. PE-MP exposure increased the levels of inflammatory markers (TNF-α, 1L-1ß, NF-κß, IL-6 & COX-2). Additionally, a considerable increase was observed in dead sperms number, abnormality of sperms (tail, midpiece and head), while a potential decrease was noticed in sperm motility in PE-MP treated rats. The expressions of steroidogenic enzymes were also decreased in PE-MP administrated group. The levels of plasma testosterone, luteinizing & follicle stimulating hormone were decreased in PE-MP treated group. Moreover, Bax and Caspase-3 expressions were increased, whereas Bcl-2 expressions were reduced. Furthermore, histopathological analysis showed that PE-MP exposure considerably damaged the testicular tissues. However, chrysoeriol supplementation potentially decreased all the adverse effects induced by PE-MP. Taken together, our findings indicate that chrysoeriol holds significant potential to avert PE-MP-induced testicular damage due to its androgenic, anti-apoptotic, anti-oxidant and anti-inflammatory nature.


Subject(s)
Antioxidants , Microplastics , Male , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Microplastics/metabolism , Plastics , Polyethylene/toxicity , Oxidative Stress , Sperm Motility , Testis
SELECTION OF CITATIONS
SEARCH DETAIL
...