Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Tradit Complement Med ; 13(2): 150-160, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36970455

ABSTRACT

Gut microbiota contributes to diverse mammalian processes including the metabolic functions of drugs. It is a potential new territory for drug targeting, especially for dietary natural compounds such as tannins, flavonoids, steroidal glycosides, anthocyanins, lignans, alkaloids, and others. Because most herbal medicines are orally administered, the chemical profile and corresponding bioactivities of herbal medicines may be altered and implication to ailments by specific microbiota through gut microbiota metabolisms (GMMs) and gut microbiota biotransformations (GMBTs). In this review, briefly introducing the interactions between different categories of natural compounds and gut microbiota produced countless microbial degraded or fragmented metabolites with their biological significance in rodent-based models. From natural product chemistry division, thousands of molecules are produced, degraded, synthesized, and isolated from natural sources but exploited due to lack of biological significance. In this direction, we add a Bio-Chemoinformatics approach to get clues of biology through a specific microbial assault to (Natural products) NPs.

2.
Metabolites ; 12(2)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35208173

ABSTRACT

Ganoderma lucidum P. karst is an edible fungus that is used in traditional medicine and contains triterpenoids as the major phytoconstituents. Ganoderic acids are the most abundant triterpenoids that showed pharmacological activity. As Indian varieties contain ganoderic acid H (GA-H), we aimed to prepare GA-H-based triterpenoid enriched fraction (TEF) and evaluated its pharmacokinetics, metabolomics, and stability analysis. A high-performance liquid chromatography (HPLC) method was developed to quantify GA-H in TEF and rat plasma. Based on GA-H content, a stability assessment and pharmacokinetic study of TEF were also performed. After its oral administration to rats, TEF's the metabolic pattern recognition was performed through ultra-performance liquid chromatography mass spectroscopy (UPLC-MS). The developed HPLC method was found to be simple, sensitive, precise (<15%), and accurate (>90% recovery) for the quantification of GA-H. Pharmacokinetic analysis showed that GA-H reached its maximum plasma concentration (Cmax 2509.9 ng/mL) within two hours and sustained quantifiable amount up to 12 h with a low elimination rate (Kel) 0.05 L/h. TEF contained ten bioavailable constituents. The prepared TEF was found to be stable for up to one year at room temperature. The prepared TEF, enriched with ganoderic acid, is stable, contains bioavailable constituents, and can be explored as phytopharmaceuticals for different pharmacological properties. Highlights: (1). Preparation of triterpenoid enriched fraction (TEF) from Ganoderma lucidum. (2). Major triterpenoid in TEF is ganoderic acid H (GA-H). (3). TEF contains several bioavailable phytoconstituents. (4). TEF (considering only GA-H) is stable for up to one year at room temperature. (5). GA-H is rapidly absorbed and has high systemic exposure.

SELECTION OF CITATIONS
SEARCH DETAIL
...