Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (203)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38284526

ABSTRACT

Membrane proteins on enveloped viruses play an important role in many biological functions involving virus attachment to target cell receptors, fusion of viral particles to host cells, host-virus interactions, and disease pathogenesis. Furthermore, viral membrane proteins on virus particles and presented on host cell surfaces have proven to be excellent targets for antivirals and vaccines. Here, we describe a protocol to investigate surface proteins on intact severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) particles using the dual-reporter flow cytometric system. The assay exploits multiplex technology to obtain a triple detection of viral particles by three independent affinity reactions. Magnetic beads conjugated to recombinant human angiotensin-converting enzyme-2 (ACE2) were used to capture viral particles from the supernatant of cells infected with SARS-CoV-2. Then, two detection reagents labeled with R-phycoerythrin (PE) or Brilliant Violet 421 (BV421) were applied simultaneously. As a proof-of-concept, antibody fragments targeting different epitopes of the SARS-CoV-2 surface protein Spike (S1) were used. The detection of viral particles by three independent affinity reactions provides strong specificity and confirms the capture of intact virus particles. Dose-dependency curves of SARS-CoV-2 infected cell supernatant were generated with replicate coefficient variances (mean/SD) ˂14%. Good assay performance in both channels confirmed that two virus surface target protein epitopes are detectable in parallel. The protocol described here could be applied for (i) high-multiplex, high-throughput profiling of surface proteins expressed on enveloped viruses; ii) detection of active intact viral particles; and (iii) assessment of specificity and affinity of antibodies and antiviral drugs for surface epitopes of viral antigens.The application can be potentially extended to any type of extracellular vesicles and bioparticles, exposing surface antigens in body fluids or other liquid matrices.


Subject(s)
Membrane Proteins , SARS-CoV-2 , Humans , Epitopes , Membrane Glycoproteins/metabolism , Receptors, Virus , Virion
2.
Int J Mol Sci ; 22(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33915913

ABSTRACT

Most chemotherapeutics target DNA integrity and thereby trigger tumour cell death through activation of DNA damage responses that are tightly coupled to the cell cycle. Disturbances in cell cycle regulation can therefore lead to treatment resistance. Here, a comprehensive analysis of cell cycle checkpoint activation following doxorubicin (doxo) treatment was performed using flow cytometry, immunofluorescence and live-cell imaging in a panel of TP53 mutated ultra high-risk neuroblastoma (NB) cell lines, SK-N-DZ, Kelly, SK-N-AS, SK-N-FI, and BE(2)-C. Following treatment, a dose-dependent accumulation in either S- and/or G2/M-phase was observed. This coincided with a heterogeneous increase of cell cycle checkpoint proteins, i.e., phos-ATM, phos-CHK1, phos-CHK2, Wee1, p21Cip1/Waf1, and p27Kip among the cell lines. Combination treatment with doxo and a small-molecule inhibitor of ATM showed a delay in regrowth in SK-N-DZ, of CHK1 in BE(2)-C, of Wee1 in SK-N-FI and BE(2)-C, and of p21 in Kelly and BE(2)-C. Further investigation revealed, in all tested cell lines, a subset of cells arrested in mitosis, indicating independence on the intra-S- and/or G2/M-checkpoints. Taken together, we mapped distinct cell cycle checkpoints in ultra high-risk NB cell lines and identified checkpoint dependent and independent druggable targets.


Subject(s)
Antibiotics, Antineoplastic/therapeutic use , Cell Cycle Checkpoints/drug effects , Doxorubicin/therapeutic use , Neuroblastoma/drug therapy , Antibiotics, Antineoplastic/pharmacology , Cell Line, Tumor , Doxorubicin/pharmacology , Genes, p53 , Humans , Molecular Targeted Therapy , Neuroblastoma/genetics
3.
Molecules ; 25(18)2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32957614

ABSTRACT

The fluorescent molecule diphenylhexatriene (DPH) has been often used in combination with fluorescence anisotropy measurements, yet little is known regarding the non-linear optical properties. In the current work, we focus on them and extend the application to fluorescence, while paying attention to the conformational versatility of DPH when it is embedded in different membrane phases. Extensive hybrid quantum mechanics/molecular mechanics calculations were performed to investigate the influence of the phase- and temperature-dependent lipid environment on the probe. Already, the transition dipole moments and one-photon absorption spectra obtained in the liquid ordered mixture of sphingomyelin (SM)-cholesterol (Chol) (2:1) differ largely from the ones calculated in the liquid disordered DOPC and solid gel DPPC membranes. Throughout the work, the molecular conformation in SM:Chol is found to differ from the other environments. The two-photon absorption spectra and the ones obtained by hyper-Rayleigh scattering depend strongly on the environment. Finally, a stringent comparison of the fluorescence anisotropy decay and the fluorescence lifetime confirm the use of DPH to gain information upon the surrounding lipids and lipid phases. DPH might thus open the possibility to detect and analyze different biological environments based on its absorption and emission properties.


Subject(s)
Diphenylhexatriene/chemistry , Fluorescent Dyes/chemistry , Lipid Bilayers/chemistry , Cholesterol/chemistry , Fluorescence Polarization , Molecular Conformation , Molecular Dynamics Simulation , Phase Transition , Sphingomyelins/chemistry , Structure-Activity Relationship , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...