Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 25(6): 3261-3270, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38752976

ABSTRACT

Two different poly(benzylmalate) biopolymers, a hydrophobic non-PEGylated (PMLABe73) and an amphiphilic PEGylated derivative (PEG42-b-PMLABe73), have been used to encapsulate a phthalocyanine chosen for its substitution pattern that is highly suitable for photodynamic therapy. Different phthalocyanine/(co)polymers ratios have been used for the nanoprecipitation. A set of six nanoparticles has been obtained. If the amphiphilic PEGylated copolymer proved to be slightly more efficient for the encapsulation and to lower the aggregation of the phthalocyanine inside the nanoparticles, it is, however, the hydrophobic PMLABe73-based nanoparticles that exhibited the best photodynamic efficiency.


Subject(s)
Indoles , Isoindoles , Photochemotherapy , Indoles/chemistry , Photochemotherapy/methods , Biopolymers/chemistry , Nanoparticles/chemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Polymers/chemistry , Polyethylene Glycols/chemistry , Hydrophobic and Hydrophilic Interactions
2.
Turk J Chem ; 47(5): 814-836, 2023.
Article in English | MEDLINE | ID: mdl-38173733

ABSTRACT

Phthalocyanines are tetrapyrrolic artificial porphyrinoids that play major roles in advanced biological and technological applications. Research on this family of dyes is particularly active in Türkiye, with many derivatives being prepared from 4,5-dihexylthiophthalonitrile DiSHexPN, which is one of the most popular noncommercially available building blocks for phthalocyanines. This review summarizes the phthalocyanines and their versatile properties and applications that have been published since 1994, when the synthesis of DiSHexPN was first described, to emphasize the importance of this building block in plentiful applications, all with biomedical or technological impact.

3.
Inorg Chem ; 59(2): 1057-1067, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31894978

ABSTRACT

Alkylthio-tetrasubstituted µ-nitrido diiron phthalocyanine complexes are synthesized with n-butyl, iso-butyl, tert-butyl, and n-hexadecyl alkyl moieties. For the first time, a spectroelectrochemical investigation of µ-nitrido diiron phthalocyanines is achieved at all the redox steps. The complexes are stable in all their redox states, unlike their unsubstituted analogues. The interest of the present complexes is to prepare sensing devices by a solution processing method. Films are characterized by electronic absorption and Raman spectroscopies. Electrical measurements on resistors show the highly resistive behavior of these complexes, whatever the chain length. However, when combined with the lutetium bisphthalocyanine, an intrinsic semiconductor, these complexes form heterojunctions that exhibit a high sensitivity to ammonia, with a very good signal over noise ratio, at room temperature and under atmospheric conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...