Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Proc SPIE Int Soc Opt Eng ; 101402017 Feb 11.
Article in English | MEDLINE | ID: mdl-28579665

ABSTRACT

Immunohistochemical detection of FOXP3 antigen is a usable marker for detection of regulatory T lymphocytes (TR) in formalin fixed and paraffin embedded sections of different types of tumor tissue. TR plays a major role in homeostasis of normal immune systems where they prevent auto reactivity of the immune system towards the host. This beneficial effect of TR is frequently "hijacked" by malignant cells where tumor-infiltrating regulatory T cells are recruited by the malignant nuclei to inhibit the beneficial immune response of the host against the tumor cells. In the majority of human solid tumors, an increased number of tumor-infiltrating FOXP3 positive TR is associated with worse outcome. However, in follicular lymphoma (FL) the impact of the number and distribution of TR on the outcome still remains controversial. In this study, we present a novel method to detect and enumerate nuclei from FOXP3 stained images of FL biopsies. The proposed method defines a new adaptive thresholding procedure, namely the optimal adaptive thresholding (OAT) method, which aims to minimize under-segmented and over-segmented nuclei for coarse segmentation. Next, we integrate a parameter free elliptical arc and line segment detector (ELSD) as additional information to refine segmentation results and to split most of the merged nuclei. Finally, we utilize a state-of-the-art super-pixel method, Simple Linear Iterative Clustering (SLIC) to split the rest of the merged nuclei. Our dataset consists of 13 region-of-interest images containing 769 negative and 88 positive nuclei. Three expert pathologists evaluated the method and reported sensitivity values in detecting negative and positive nuclei ranging from 83-100% and 90-95%, and precision values of 98-100% and 99-100%, respectively. The proposed solution can be used to investigate the impact of FOXP3 positive nuclei on the outcome and prognosis in FL.

2.
Med Phys ; 39(6Part27): 3962, 2012 Jun.
Article in English | MEDLINE | ID: mdl-28519985

ABSTRACT

Standalone performance evaluation of a CAD system provides information about the abnormality detection or classification performance of the computerized system alone. Although the performance of the reader with CAD is the final step in CAD system assessment, standalone performance evaluation is an important component for several reasons: First, standalone evaluation informs the reader about the performance level of the CAD system and may have an impact on how the reader uses the system. Second, it provides essential information to the system designer for algorithm optimization during system development. Third, standalone evaluation can provide a detailed description of algorithm performance (e.g., on subgroups of the population) because a larger data set with more samples from different subgroups can be included in standalone studies compared to reader studies. Proper standalone evaluation of a CAD system involves a number of key components, some of which are shared with the assessment of reader performance with CAD. These include (1) selection of a test data set that allows performance assessment with little or no bias and acceptable uncertainty; (2) a reference standard that indicates disease status as well as the location and extent of disease; (3) a clearly defined method for labeling each CAD mark as a true-positive or false-positive; and (4) a properly selected set of metrics to summarize the accuracy of the computer marks and their corresponding scores. In this lecture, we will discuss various approaches for the key components of standalone CAD performance evaluation listed above, and present some of the recommendations and opinions from the AAPM CAD subcommittee on these issues. Learning Objectives 1. Identify basic components and metrics in the assessment of standalone CAD systems 2. Understand how each component may affect the assessed performance 3. Learn about AAPM CAD subcommittee's opinions and recommendations on factors and metrics related to the evaluation of standalone CAD system performance.

3.
AJNR Am J Neuroradiol ; 31(9): 1744-51, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20595363

ABSTRACT

BACKGROUND AND PURPOSE: Head and neck cancer can cause substantial morbidity and mortality. Our aim was to evaluate the potential usefulness of a computerized system for segmenting lesions in head and neck CT scans and for estimation of volume change of head and neck malignant tumors in response to treatment. MATERIALS AND METHODS: CT scans from a pretreatment examination and a post 1-cycle chemotherapy examination of 34 patients with 34 head and neck primary-site cancers were collected. The computerized system was developed in our laboratory. It performs 3D segmentation on the basis of a level-set model and uses as input an approximate bounding box for the lesion of interest. The 34 tumors included tongue, tonsil, vallecula, supraglottic, epiglottic, and hard palate carcinomas. As a reference standard, 1 radiologist outlined full 3D contours for each of the 34 primary tumors for both the pre- and posttreatment scans and a second radiologist verified the contours. RESULTS: The correlation between the automatic and manual estimates for both the pre- to post-treatment volume change and the percentage volume change for the 34 primary-site tumors was 0.95, with an average error of -2.4 ± 8.5% by automatic segmentation. There was no substantial difference and specific trend in the automatic segmentation accuracy for the different types of primary head and neck tumors, indicating that the computerized segmentation performs relatively robustly for this application. CONCLUSIONS: The tumor size change in response to treatment can be accurately estimated by the computerized segmentation system relative to radiologists' manual estimations for different types of head and neck tumors.


Subject(s)
Antineoplastic Agents/therapeutic use , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/drug therapy , Imaging, Three-Dimensional/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Prognosis , Reproducibility of Results , Sensitivity and Specificity , Treatment Outcome
4.
Med Phys ; 28(9): 1937-48, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11585225

ABSTRACT

Many computer-aided diagnosis (CAD) systems use neural networks (NNs) for either detection or classification of abnormalities. Currently, most NNs are "optimized" by manual search in a very limited parameter space. In this work, we evaluated the use of automated optimization methods for selecting an optimal convolution neural network (CNN) architecture. Three automated methods, the steepest descent (SD), the simulated annealing (SA), and the genetic algorithm (GA), were compared. We used as an example the CNN that classifies true and false microcalcifications detected on digitized mammograms by a prescreening algorithm. Four parameters of the CNN architecture were considered for optimization, the numbers of node groups and the filter kernel sizes in the first and second hidden layers, resulting in a search space of 432 possible architectures. The area Az under the receiver operating characteristic (ROC) curve was used to design a cost function. The SA experiments were conducted with four different annealing schedules. Three different parent selection methods were compared for the GA experiments. An available data set was split into two groups with approximately equal number of samples. By using the two groups alternately for training and testing, two different cost surfaces were evaluated. For the first cost surface, the SD method was trapped in a local minimum 91% (392/432) of the time. The SA using the Boltzman schedule selected the best architecture after evaluating, on average, 167 architectures. The GA achieved its best performance with linearly scaled roulette-wheel parent selection; however, it evaluated 391 different architectures, on average, to find the best one. The second cost surface contained no local minimum. For this surface, a simple SD algorithm could quickly find the global minimum, but the SA with the very fast reannealing schedule was still the most efficient. The same SA scheme, however, was trapped in a local minimum on the first cost surface. Our CNN study demonstrated that, if optimization is to be performed on a cost surface whose characteristics are not known a priori, it is advisable that a moderately fast algorithm such as a SA using a Boltzman cooling schedule be used to conduct an efficient and thorough search, which may offer a better chance of reaching the global minimum.


Subject(s)
Calcinosis/diagnosis , Diagnosis, Computer-Assisted , Neural Networks, Computer , Algorithms , Biophysical Phenomena , Biophysics , Breast Neoplasms/diagnosis , Breast Neoplasms/diagnostic imaging , Calcinosis/diagnostic imaging , Female , Humans , Mammography , Radiographic Image Interpretation, Computer-Assisted
5.
Med Phys ; 28(7): 1455-65, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11488579

ABSTRACT

We are developing new computer vision techniques for characterization of breast masses on mammograms. We had previously developed a characterization method based on texture features. The goal of the present work was to improve our characterization method by making use of morphological features. Toward this goal, we have developed a fully automated, three-stage segmentation method that includes clustering, active contour, and spiculation detection stages. After segmentation, morphological features describing the shape of the mass were extracted. Texture features were also extracted from a band of pixels surrounding the mass. Stepwise feature selection and linear discriminant analysis were employed in the morphological, texture, and combined feature spaces for classifier design. The classification accuracy was evaluated using the area Az under the receiver operating characteristic curve. A data set containing 249 films from 102 patients was used. When the leave-one-case-out method was applied to partition the data set into trainers and testers, the average test Az for the task of classifying the mass on a single mammographic view was 0.83 +/- 0.02, 0.84 +/- 0.02, and 0.87 +/- 0.02 in the morphological, texture, and combined feature spaces, respectively. The improvement obtained by supplementing texture features with morphological features in classification was statistically significant (p = 0.04). For classifying a mass as malignant or benign, we combined the leave-one-case-out discriminant scores from different views of a mass to obtain a summary score. In this task, the test Az value using the combined feature space was 0.91 +/- 0.02. Our results indicate that combining texture features with morphological features extracted from automatically segmented mass boundaries will be an effective approach for computer-aided characterization of mammographic masses.


Subject(s)
Breast Neoplasms/diagnosis , Diagnosis, Computer-Assisted/methods , Mammography/instrumentation , Mammography/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Automation , Cluster Analysis , Female , Fourier Analysis , Humans , Models, Statistical , ROC Curve , Software
6.
Med Phys ; 28(6): 1056-69, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11439475

ABSTRACT

An automated image analysis tool is being developed for the estimation of mammographic breast density. This tool may be useful for risk estimation or for monitoring breast density change in prevention or intervention programs. In this preliminary study, a data set of 4-view mammograms from 65 patients was used to evaluate our approach. Breast density analysis was performed on the digitized mammograms in three stages. First, the breast region was segmented from the surrounding background by an automated breast boundary-tracking algorithm. Second, an adaptive dynamic range compression technique was applied to the breast image to reduce the range of the gray level distribution in the low frequency background and to enhance the differences in the characteristic features of the gray level histogram for breasts of different densities. Third, rule-based classification was used to classify the breast images into four classes according to the characteristic features of their gray level histogram. For each image, a gray level threshold was automatically determined to segment the dense tissue from the breast region. The area of segmented dense tissue as a percentage of the breast area was then estimated. To evaluate the performance of the algorithm, the computer segmentation results were compared to manual segmentation with interactive thresholding by five radiologists. A "true" percent dense area for each mammogram was obtained by averaging the manually segmented areas of the radiologists. We found that the histograms of 6% (8 CC and 8 MLO views) of the breast regions were misclassified by the computer, resulting in poor segmentation of the dense region. For the images with correct classification, the correlation between the computer-estimated percent dense area and the "truth" was 0.94 and 0.91, respectively, for CC and MLO views, with a mean bias of less than 2%. The mean biases of the five radiologists' visual estimates for the same images ranged from 0.1% to 11%. The results demonstrate the feasibility of estimating mammographic breast density using computer vision techniques and its potential to improve the accuracy and reproducibility of breast density estimation in comparison with the subjective visual assessment by radiologists.


Subject(s)
Breast/anatomy & histology , Mammography/statistics & numerical data , Radiographic Image Interpretation, Computer-Assisted , Biophysical Phenomena , Biophysics , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Databases, Factual , Female , Humans , Radiation Oncology
7.
Med Phys ; 28(6): 1070-9, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11439476

ABSTRACT

Analysis of interval change is important for mammographic interpretation. The aim of this study is to evaluate the use of an automated registration technique for computer-aided interval change analysis in mammography. Previously we developed a regional registration technique for identifying masses on temporal pairs of mammograms. In the current study, we improved lesion registration by including a local alignment step. Initially, the lesion position on the prior mammogram was estimated based on the breast geometry. An initial fan-shaped search region was then defined on the prior mammogram. In the second stage, the location of the fan-shaped region on the prior mammogram was refined by warping, based on an affine transformation and simplex optimization in a local region. In the third stage, a search for the best match between the lesion template from the current mammogram and a structure on the prior mammogram was carried out within the search region. This technique was evaluated on 124 temporal pairs of mammograms containing biopsyproven masses. Eighty-seven percent of the estimated lesion locations resulted in an area overlap of at least 50% with the true lesion locations and an average distance of 2.4 +/- 2.1 mm between their centroids. The average distance between the estimated and the true centroid of the lesions on the prior mammogram over all 124 temporal pairs was 4.2 +/- 5.7 mm. The registration accuracy was improved in comparison with our previous study that used a data set of 74 temporal pairs of mammograms. This improvement in accuracy resulted from the improved geometry estimation and the local affine transformation.


Subject(s)
Breast Neoplasms/diagnostic imaging , Mammography/statistics & numerical data , Radiographic Image Interpretation, Computer-Assisted , Biophysical Phenomena , Biophysics , Databases, Factual , Female , Humans , Nonlinear Dynamics , Time Factors
8.
Acad Radiol ; 8(6): 454-66, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11394537

ABSTRACT

RATIONALE AND OBJECTIVES: The authors performed this study to evaluate the effects of pixel size on the characterization of mammographic microcalcifications by radiologists. MATERIALS AND METHODS: Two-view mammograms of 112 microcalcification clusters were digitized with a laser scanner at a pixel size of 35 microm. Images with pixel sizes of 70, 105, and 140 microm were derived from the 35-microm-pixel size images by averaging neighboring pixels. The malignancy or benignity of the microcalcifications had been determined with findings at biopsy or 2-year follow-up. Region-of-interest images containing the microcalcifications were printed with a laser imager. Seven radiologists participated in a receiver operating characteristic (ROC) study to estimate the likelihood of malignancy. The classification accuracy was quantified with the area under the ROC curve (Az). The statistical significance of the differences in the Az values for different pixel sizes was estimated with the Dorfman-Berbaum-Metz method and the Student paired t test. The variance components were analyzed with a bootstrap method. RESULTS: The higher-resolution images did not result in better classification; the average Az with a pixel size of 35 microm was lower than that with pixel sizes of 70 and 105 microm. The differences in Az between different pixel sizes did not achieve statistical significance. CONCLUSION: Pixel sizes in the range studied do not have a strong effect on radiologists' accuracy in the characterization of microcalcifications. The low specificity of the image features of microcalcifications and the large interobserver and intraobserver variabilities may have prevented small advantages in image resolution from being observed.


Subject(s)
Breast Diseases/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Calcinosis/diagnostic imaging , Mammography/methods , Radiographic Image Enhancement/methods , Female , Humans , Observer Variation , ROC Curve
9.
Med Phys ; 28(11): 2309-17, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11764038

ABSTRACT

A new classification scheme was developed to classify mammographic masses as malignant and benign by using interval change information. The masses on both the current and the prior mammograms were automatically segmented using an active contour method. From each mass, 20 run length statistics (RLS) texture features, 3 speculation features, and 12 morphological features were extracted. Additionally, 20 difference RLS features were obtained by subtracting the prior RLS features from the corresponding current RLS features. The feature space consisted of the current RLS features, the difference RLS features, the current and prior speculation features, and the current and prior mass sizes. Stepwise feature selection and linear discriminant analysis classification were used to select and merge the most useful features. A leave-one-case-out resampling scheme was used to train and test the classifier using 140 temporal image pairs (85 malignant, 55 benign) obtained from 57 biopsy-proven masses (33 malignant, 24 benign) in 56 patients. An average of 10 features were selected from the 56 training subsets: 4 difference RLS features, 4 RLS features, and 1 speculation feature from the current image, and 1 speculation feature from the prior, were most often chosen. The classifier achieved an average training Az of 0.92 and a test Az of 0.88. For comparison, a classifier was trained and tested using features extracted from the 120 current single images. This classifier achieved an average training Az of 0.90 and a test Az of 0.82. The information on the prior image significantly (p = 0.015) improved the accuracy for classification of the masses.


Subject(s)
Breast Neoplasms/diagnosis , Breast/pathology , Image Processing, Computer-Assisted/methods , Mammography/instrumentation , Mammography/methods , Algorithms , False Positive Reactions , Female , Humans , Observer Variation , Reproducibility of Results , Software , Time Factors
10.
IEEE Trans Med Imaging ; 20(12): 1275-84, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11811827

ABSTRACT

Mass segmentation is used as the first step in many computer-aided diagnosis (CAD) systems for classification of breast masses as malignant or benign. The goal of this paper was to study the accuracy of an automated mass segmentation method developed in our laboratory, and to investigate the effect of the segmentation stage on the overall classification accuracy. The automated segmentation method was quantitatively compared with manual segmentation by two expert radiologists (R1 and R2) using three similarity or distance measures on a data set of 100 masses. The area overlap measures between R1 and R2, the computer and R1, and the computer and R2 were 0.76 +/- 0.13, 0.74 +/- 0.11, and 0.74 +/- 0.13, respectively. The interobserver difference in these measures between the two radiologists was compared with the corresponding differences between the computer and the radiologists. Using three similarity measures and data from two radiologists, a total of six statistical tests were performed. The difference between the computer and the radiologist segmentation was significantly larger than the interobserver variability in only one test. Two sets of texture, morphological, and spiculation features, one based on the computer segmentation, and the other based on radiologist segmentation, were extracted from a data set of 249 films from 102 patients. A classifier based on stepwise feature selection and linear discriminant analysis was trained and tested using the two feature sets. The leave-one-case-out method was used for data sampling. For case-based classification, the area Az under the receiver operating characteristic (ROC) curve was 0.89 and 0.88 for the feature sets based on the radiologist segmentation and computer segmentation, respectively. The difference between the two ROC curves was not statistically significant.


Subject(s)
Breast Neoplasms/classification , Breast Neoplasms/diagnostic imaging , Mammography/classification , Mammography/methods , Radiographic Image Enhancement/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Algorithms , Cluster Analysis , Databases, Factual , Diagnosis, Differential , False Positive Reactions , Humans , Mammography/statistics & numerical data , Pattern Recognition, Automated , ROC Curve , Random Allocation , Reproducibility of Results , Sensitivity and Specificity
11.
Med Phys ; 27(7): 1509-22, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10947254

ABSTRACT

In computer-aided diagnosis (CAD), a frequently used approach for distinguishing normal and abnormal cases is first to extract potentially useful features for the classification task. Effective features are then selected from this entire pool of available features. Finally, a classifier is designed using the selected features. In this study, we investigated the effect of finite sample size on classification accuracy when classifier design involves stepwise feature selection in linear discriminant analysis, which is the most commonly used feature selection algorithm for linear classifiers. The feature selection and the classifier coefficient estimation steps were considered to be cascading stages in the classifier design process. We compared the performance of the classifier when feature selection was performed on the design samples alone and on the entire set of available samples, which consisted of design and test samples. The area Az under the receiver operating characteristic curve was used as our performance measure. After linear classifier coefficient estimation using the design samples, we studied the hold-out and resubstitution performance estimates. The two classes were assumed to have multidimensional Gaussian distributions, with a large number of features available for feature selection. We investigated the dependence of feature selection performance on the covariance matrices and means for the two classes, and examined the effects of sample size, number of available features, and parameters of stepwise feature selection on classifier bias. Our results indicated that the resubstitution estimate was always optimistically biased, except in cases where the parameters of stepwise feature selection were chosen such that too few features were selected by the stepwise procedure. When feature selection was performed using only the design samples, the hold-out estimate was always pessimistically biased. When feature selection was performed using the entire finite sample space, the hold-out estimates could be pessimistically or optimistically biased, depending on the number of features available for selection, the number of available samples, and their statistical distribution. For our simulation conditions, these estimates were always pessimistically (conservatively) biased if the ratio of the total number of available samples per class to the number of available features was greater than five.


Subject(s)
Diagnosis, Computer-Assisted/methods , Algorithms , Computer Simulation , Humans , Linear Models , Models, Statistical , Normal Distribution
12.
Radiology ; 212(3): 817-27, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10478252

ABSTRACT

PURPOSE: To evaluate the effects of computer-aided diagnosis (CAD) on radiologists' classification of malignant and benign masses seen on mammograms. MATERIALS AND METHODS: The authors previously developed an automated computer program for estimation of the relative malignancy rating of masses. In the present study, the authors conducted observer performance experiments with receiver operating characteristic (ROC) methodology to evaluate the effects of computer estimates on radiologists' confidence ratings. Six radiologists assessed biopsy-proved masses with and without CAD. Two experiments, one with a single view and the other with two views, were conducted. The classification accuracy was quantified by using the area under the ROC curve, Az. RESULTS: For the reading of 238 images, the Az value for the computer classifier was 0.92. The radiologists' Az values ranged from 0.79 to 0.92 without CAD and improved to 0.87-0.96 with CAD. For the reading of a subset of 76 paired views, the radiologists' Az values ranged from 0.88 to 0.95 without CAD and improved to 0.93-0.97 with CAD. Improvements in the reading of the two sets of images were statistically significant (P = .022 and .007, respectively). An improved positive predictive value as a function of the false-negative fraction was predicted from the improved ROC curves. CONCLUSION: CAD may be useful for assisting radiologists in classification of masses and thereby potentially help reduce unnecessary biopsies.


Subject(s)
Breast Neoplasms/diagnosis , Diagnosis, Computer-Assisted , Image Processing, Computer-Assisted , Mammography , Breast/pathology , Breast Diseases/diagnosis , Confidence Intervals , Diagnosis, Differential , Female , Humans , Observer Variation , ROC Curve , Sensitivity and Specificity
13.
Med Phys ; 26(8): 1642-54, 1999 Aug.
Article in English | MEDLINE | ID: mdl-10501064

ABSTRACT

As an ongoing effort to develop a computer aid for detection of masses on mammograms, we recently designed an object-based region-growing technique to improve mass segmentation. This segmentation method utilizes the density-weighted contrast enhancement (DWCE) filter as a pre-processing step. The DWCE filter adaptively enhances the contrast between the breast structures and the background. Object-based region growing was then applied to each of the identified structures. The region-growing technique uses gray-scale and gradient information to adjust the initial object borders and to reduce merging between adjacent or overlapping structures. Each object is then classified as a breast mass or normal tissue based on extracted morphological and texture features. In this study we evaluated the sensitivity of this combined segmentation scheme and its ability to reduce false positive (FP) detections on a data set of 253 digitized mammograms, each of which contained a biopsy-proven breast mass. It was found that the segmentation scheme detected 98% of the 253 biopsy-proven breast masses in our data set. After final FP reduction, the detection resulted in 4.2 FP per image at a 90% true positive (TP) fraction and 2.0 FPs per image at an 80% TP fraction. The combined DWCE and object-based region growing technique increased the initial detection sensitivity, reduced merging between neighboring structures, and reduced the number of FP detections in our automated breast mass detection scheme.


Subject(s)
Breast Neoplasms/diagnostic imaging , Mammography/methods , Radiographic Image Enhancement/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Biophysical Phenomena , Biophysics , False Positive Reactions , Female , Humans
14.
Med Phys ; 26(12): 2669-79, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10619252

ABSTRACT

Analysis of interval change is a useful technique for detection of abnormalities in mammographic interpretation. Interval change analysis is routinely used by radiologists and its importance is well-established in clinical practice. As a first step to develop a computerized method for interval change analysis on mammograms, we are developing an automated regional registration technique to identify corresponding lesions on temporal pairs of mammograms. In this technique, the breast is first segmented from the background on the current and previous mammograms. The breast edges are then aligned using a global alignment procedure based on the mutual information between the breast regions in the two images. Using the nipple location and the breast centroid estimated independently on both mammograms, a polar coordinate system is defined for each image. The polar coordinate of the centroid of a lesion detected on the most recent mammogram is used to obtain an initial estimate of its location on the previous mammogram and to define a fan-shaped search region. A search for a matching structure to the lesion is then performed in the fan-shaped region on the previous mammogram to obtain a final estimate of its location. In this study, a quantitative evaluation of registration accuracy has been performed with a data set of 74 temporal pairs of mammograms and ground-truth correspondence information provided by an experienced radiologist. The most recent mammogram of each temporal pair exhibited a biopsy-proven mass. We have investigated the usefulness of correlation and mutual information as search criteria for determining corresponding regions on mammograms for the biopsy-proven masses. In 85% of the cases (63/74 temporal pairs) the region on the previous mammogram that corresponded to the mass on the current mammogram was correctly identified. The region centroid identified by the registration technique had an average distance of 2.8+/-1.9 mm from the centroid of the radiologist-identified region. These results indicate that our new registration technique may be useful for establishing correspondence between structures on current and previous mammograms. Once such a correspondence is established an interval change analysis could be performed to aid in both detection as well as classification of abnormal breast densities.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast Neoplasms/diagnosis , Mammography/instrumentation , Mammography/methods , Female , Humans , Image Processing, Computer-Assisted
15.
Med Phys ; 26(12): 2654-68, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10619251

ABSTRACT

Classifier design is one of the key steps in the development of computer-aided diagnosis (CAD) algorithms. A classifier is designed with case samples drawn from the patient population. Generally, the sample size available for classifier design is limited, which introduces variance and bias into the performance of the trained classifier, relative to that obtained with an infinite sample size. For CAD applications, a commonly used performance index for a classifier is the area, Az, under the receiver operating characteristic (ROC) curve. We have conducted a computer simulation study to investigate the dependence of the mean performance, in terms of Az, on design sample size for a linear discriminant and two nonlinear classifiers, the quadratic discriminant and the backpropagation neural network (ANN). The performances of the classifiers were compared for four types of class distributions that have specific properties: multivariate normal distributions with equal covariance matrices and unequal means, unequal covariance matrices and unequal means, and unequal covariance matrices and equal means, and a feature space where the two classes were uniformly distributed in disjoint checkerboard regions. We evaluated the performances of the classifiers in feature spaces of dimensionality ranging from 3 to 15, and design sample sizes from 20 to 800 per class. The dependence of the resubstitution and hold-out performance on design (training) sample size (Nt) was investigated. For multivariate normal class distributions with equal covariance matrices, the linear discriminant is the optimal classifier. It was found that its Az-versus-1/Nt curves can be closely approximated by linear dependences over the range of sample sizes studied. In the feature spaces with unequal covariance matrices where the quadratic discriminant is optimal, the linear discriminant is inferior to the quadratic discriminant or the ANN when the design sample size is large. However, when the design sample is small, a relatively simple classifier, such as the linear discriminant or an ANN with very few hidden nodes, may be preferred because performance bias increases with the complexity of the classifier. In the regime where the classifier performance is dominated by the 1/Nt term, the performance in the limit of infinite sample size can be estimated as the intercept (1/Nt= 0) of a linear regression of Az versus 1/Nt. The understanding of the performance of the classifiers under the constraint of a finite design sample size is expected to facilitate the selection of a proper classifier for a given classification task and the design of an efficient resampling scheme.


Subject(s)
Diagnosis, Computer-Assisted , Neural Networks, Computer , Computer Simulation , Models, Statistical , Multivariate Analysis , Software
16.
IEEE Trans Med Imaging ; 18(12): 1178-87, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10695530

ABSTRACT

A new type of classifier combining an unsupervised and a supervised model was designed and applied to classification of malignant and benign masses on mammograms. The unsupervised model was based on an adaptive resonance theory (ART2) network which clustered the masses into a number of separate classes. The classes were divided into two types: one containing only malignant masses and the other containing a mix of malignant and benign masses. The masses from the malignant classes were classified by ART2. The masses from the mixed classes were input to a supervised linear discriminant classifier (LDA). In this way, some malignant masses were separated and classified by ART2 and the less distinguishable benign and malignant masses were classified by LDA. For the evaluation of classifier performance, 348 regions of interest (ROI's) containing biopsy proven masses (169 benign and 179 malignant) were used. Ten different partitions of training and test groups were randomly generated using an average of 73% of ROI's for training and 27% for testing. Classifier design, including feature selection and weight optimization, was performed with the training group. The test group was kept independent of the training group. The performance of the hybrid classifier was compared to that of an LDA classifier alone and a backpropagation neural network (BPN). Receiver operating characteristics (ROC) analysis was used to evaluate the accuracy of the classifiers. The average area under the ROC curve (A(z)) for the hybrid classifier was 0.81 as compared to 0.78 for the LDA and 0.80 for the BPN. The partial areas above a true positive fraction of 0.9 were 0.34, 0.27 and 0.31 for the hybrid, the LDA and the BPN classifier, respectively. These results indicate that the hybrid classifier is a promising approach for improving the accuracy of classification in CAD applications.


Subject(s)
Breast Diseases/classification , Diagnosis, Computer-Assisted , Mammography , Neural Networks, Computer , Biopsy , Breast Diseases/diagnostic imaging , Breast Diseases/pathology , Breast Neoplasms/classification , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Diagnosis, Differential , Female , Humans , ROC Curve
17.
Med Phys ; 25(10): 2007-19, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9800710

ABSTRACT

We are developing computerized feature extraction and classification methods to analyze malignant and benign microcalcifications on digitized mammograms. Morphological features that described the size, contrast, and shape of microcalcifications and their variations within a cluster were designed to characterize microcalcifications segmented from the mammographic background. Texture features were derived from the spatial gray-level dependence (SGLD) matrices constructed at multiple distances and directions from tissue regions containing microcalcifications. A genetic algorithm (GA) based feature selection technique was used to select the best feature subset from the multi-dimensional feature spaces. The GA-based method was compared to the commonly used feature selection method based on the stepwise linear discriminant analysis (LDA) procedure. Linear discriminant classifiers using the selected features as input predictor variables were formulated for the classification task. The discriminant scores output from the classifiers were analyzed by receiver operating characteristic (ROC) methodology and the classification accuracy was quantified by the area, Az, under the ROC curve. We analyzed a data set of 145 mammographic microcalcification clusters in this study. It was found that the feature subsets selected by the GA-based method are comparable to or slightly better than those selected by the stepwise LDA method. The texture features (Az = 0.84) were more effective than morphological features (Az = 0.79) in distinguishing malignant and benign microcalcifications. The highest classification accuracy (Az = 0.89) was obtained in the combined texture and morphological feature space. The improvement was statistically significant in comparison to classification in either the morphological (p = 0.002) or the texture (p = 0.04) feature space alone. The classifier using the best feature subset from the combined feature space and an appropriate decision threshold could correctly identify 35% of the benign clusters without missing a malignant cluster. When the average discriminant score from all views of the same cluster was used for classification, the Az value increased to 0.93 and the classifier could identify 50% of the benign clusters at 100% sensitivity for malignancy. Alternatively, if the minimum discriminant score from all views of the same cluster was used, the Az value would be 0.90 and a specificity of 32% would be obtained at 100% sensitivity. The results of this study indicate the potential of using combined morphological and texture features for computer-aided classification of microcalcifications.


Subject(s)
Breast Neoplasms/diagnostic imaging , Calcinosis/diagnostic imaging , Diagnosis, Computer-Assisted/methods , Mammography/methods , Radiographic Image Enhancement/methods , Algorithms , Biophysical Phenomena , Biophysics , Diagnosis, Computer-Assisted/statistics & numerical data , Discriminant Analysis , Female , Humans , Mammography/statistics & numerical data , Sensitivity and Specificity
18.
Phys Med Biol ; 43(10): 2853-71, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9814523

ABSTRACT

A genetic algorithm (GA) based feature selection method was developed for the design of high-sensitivity classifiers, which were tailored to yield high sensitivity with high specificity. The fitness function of the GA was based on the receiver operating characteristic (ROC) partial area index, which is defined as the average specificity above a given sensitivity threshold. The designed GA evolved towards the selection of feature combinations which yielded high specificity in the high-sensitivity region of the ROC curve, regardless of the performance at low sensitivity. This is a desirable quality of a classifier used for breast lesion characterization, since the focus in breast lesion characterization is to diagnose correctly as many benign lesions as possible without missing malignancies. The high-sensitivity classifier, formulated as the Fisher's linear discriminant using GA-selected feature variables, was employed to classify 255 biopsy-proven mammographic masses as malignant or benign. The mammograms were digitized at a pixel size of 0.1 mm x 0.1 mm, and regions of interest (ROIs) containing the biopsied masses were extracted by an experienced radiologist. A recently developed image transformation technique, referred to as the rubber-band straightening transform, was applied to the ROIs. Texture features extracted from the spatial grey-level dependence and run-length statistics matrices of the transformed ROIs were used to distinguish malignant and benign masses. The classification accuracy of the high-sensitivity classifier was compared with that of linear discriminant analysis with stepwise feature selection (LDAsfs). With proper GA training, the ROC partial area of the high-sensitivity classifier above a true-positive fraction of 0.95 was significantly larger than that of LDAsfs, although the latter provided a higher total area (Az) under the ROC curve. By setting an appropriate decision threshold, the high-sensitivity classifier and LDAsfs correctly identified 61% and 34% of the benign masses respectively without missing any malignant masses. Our results show that the choice of the feature selection technique is important in computer-aided diagnosis, and that the GA may be a useful tool for designing classifiers for lesion characterization.


Subject(s)
Algorithms , Breast Neoplasms/diagnosis , Computers , Mammography/methods , Biopsy , Breast Neoplasms/pathology , Female , Humans , Image Processing, Computer-Assisted
19.
Med Phys ; 25(4): 516-26, 1998 Apr.
Article in English | MEDLINE | ID: mdl-9571620

ABSTRACT

A new rubber band straightening transform (RBST) is introduced for characterization of mammographic masses as malignant or benign. The RBST transforms a band of pixels surrounding a segmented mass onto the Cartesian plane (the RBST image). The border of a mammographic mass appears approximately as a horizontal line, and possible speculations resemble vertical lines in the RBST image. In this study, the effectiveness of a set of directional textures extracted from the images before the RBST. A database of 168 mammograms containing biopsy-proven malignant and benign breast masses was digitized at a pixel size of 100 microns x 100 microns. Regions of interest (ROIs) containing the biopsied mass were extracted from each mammogram by an experienced radiologist. A clustering algorithm was employed for automated segmentation of each ROI into a mass object and background tissue. Texture features extracted from spatial gray-level dependence matrices and run-length statistics matrices were evaluated for three different regions and representations: (i) the entire ROI; (ii) a band of pixels surrounding the segmented mass object in the ROI; and (iii) the RBST image. Linear discriminant analysis was used for classification, and receiver operating characteristic (ROC) analysis was used to evaluate the classification accuracy. Using the ROC curves as the performance measure, features extracted from the RBST images were found to be significantly more effective than those extracted from the original images. Features extracted from the RBST images yielded an area (Az) of 0.94 under the ROC curve for classification of mammographic masses as malignant and benign.


Subject(s)
Breast Diseases/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Mammography , Radiographic Image Interpretation, Computer-Assisted , Biopsy , Breast Diseases/pathology , Breast Neoplasms/pathology , Databases, Factual , Diagnosis, Differential , False Positive Reactions , Female , Humans , Reference Values , Reproducibility of Results , Retrospective Studies
20.
Med Phys ; 24(6): 903-14, 1997 Jun.
Article in English | MEDLINE | ID: mdl-9198026

ABSTRACT

We investigated the application of multiresolution global and local texture features to reduce false-positive detection in a computerized mass detection program. One hundred and sixty-eight digitized mammograms were randomly and equally divided into training and test groups. From these mammograms, two datasets were formed. The first dataset (manual) contained four regions of interest (ROIs) selected manually from each of the mammograms. One of the four ROIs contained a biopsy-proven mass and the other three contained normal parenchyma, including dense, mixed dense/fatty, and fatty tissues. The second dataset (hybrid) contained the manually extracted mass ROIs, along with normal tissue ROIs extracted by an automated Density-Weighted Contrast Enhancement (DWCE) algorithm as false-positive detections. A wavelet transform was used to decompose an ROI into several scales. Global texture features were derived from the low-pass coefficients in the wavelet transformed images. Local texture features were calculated from the suspicious object and the peripheral subregions. Linear discriminant models using effective features selected from the global, local, or combined feature spaces were established to maximize the separation between masses and normal tissue. Receiver Operating Characteristic (ROC) analysis was conducted to evaluate the classifier performance. The classification accuracy using global features were comparable to that using local features. With both global and local features, the average area, Az, under the test ROC curve, reached 0.92 for the manual dataset and 0.96 for the hybrid dataset, demonstrating statistically significant improvement over those obtained with global or local features alone. The results indicated the effectiveness of the combined global and local features in the classification of masses and normal tissue for false-positive reduction.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast Neoplasms/diagnosis , Diagnosis, Computer-Assisted/methods , Mammography/methods , Radiographic Image Enhancement/methods , Biophysical Phenomena , Biophysics , Discriminant Analysis , False Positive Reactions , Female , Humans , Image Processing, Computer-Assisted/methods , Mammography/statistics & numerical data , Models, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL