Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Tree Physiol ; 44(1)2024 02 06.
Article in English | MEDLINE | ID: mdl-37756632

ABSTRACT

Continuous cover forestry (CCF) has gained interest as an alternative to even-aged management particularly on drained peatland forests. However, relatively little is known about the physiological response of suppressed trees when larger trees are removed as a part of CCF practices. Consequently, studies concentrating on process-level modeling of the response of trees to selection harvesting are also rare. Here, we compared, modeled and measured harvest response of previously suppressed Norway spruce (Picea abies) trees to a selection harvest. We quantified the harvest response by collecting Norway spruce tree-ring samples in a drained peatland forest site and measuring the change in stable carbon and oxygen isotopic ratios of wood formed during 2010-20, including five post-harvest years. The measured isotopic ratios were compared with ecosystem-level process model predictions for ${\kern0em }^{13}$C discrimination and ${\kern0em }^{18}$O leaf water enrichment. We found that the model predicted similar but lower harvest response than the measurements. Furthermore, accounting for mesophyll conductance was important for capturing the variation in ${\kern0em }^{13}$C discrimination. In addition, we performed sensitivity analysis on the model, which suggests that the modeled ${\kern0em }^{13}$C discrimination is sensitive to parameters related to CO2 transport through stomata to the mesophyll.


Subject(s)
Carbon , Picea , Picea/physiology , Ecosystem , Carbon Isotopes/analysis , Oxygen Isotopes/analysis , Forests , Trees , Norway
2.
Plant Cell Environ ; 46(9): 2649-2666, 2023 09.
Article in English | MEDLINE | ID: mdl-37312624

ABSTRACT

Carbon isotope composition of tree-ring (δ13 CRing ) is a commonly used proxy for environmental change and ecophysiology. δ13 CRing reconstructions are based on a solid knowledge of isotope fractionations during formation of primary photosynthates (δ13 CP ), such as sucrose. However, δ13 CRing is not merely a record of δ13 CP . Isotope fractionation processes, which are not yet fully understood, modify δ13 CP during sucrose transport. We traced, how the environmental intra-seasonal δ13 CP signal changes from leaves to phloem, tree-ring and roots, for 7 year old Pinus sylvestris, using δ13 C analysis of individual carbohydrates, δ13 CRing laser ablation, leaf gas exchange and enzyme activity measurements. The intra-seasonal δ13 CP dynamics was clearly reflected by δ13 CRing , suggesting negligible impact of reserve use on δ13 CRing . However, δ13 CP became increasingly 13 C-enriched during down-stem transport, probably due to post-photosynthetic fractionations such as sink organ catabolism. In contrast, δ13 C of water-soluble carbohydrates, analysed for the same extracts, did not reflect the same isotope dynamics and fractionations as δ13 CP , but recorded intra-seasonal δ13 CP variability. The impact of environmental signals on δ13 CRing , and the 0.5 and 1.7‰ depletion in photosynthates compared ring organic matter and tree-ring cellulose, respectively, are useful pieces of information for studies exploiting δ13 CRing .


Subject(s)
Laser Therapy , Pinus sylvestris , Pinus , Trees/metabolism , Pinus sylvestris/metabolism , Seasons , Carbon Isotopes/analysis , Carbohydrates/analysis , Plant Leaves/metabolism , Sucrose/metabolism , Pinus/metabolism
3.
New Phytol ; 237(5): 1606-1619, 2023 03.
Article in English | MEDLINE | ID: mdl-36451527

ABSTRACT

Intrinsic water-use efficiency (iWUE), a key index for carbon and water balance, has been widely estimated from tree-ring δ13 C at annual resolution, but rarely at high-resolution intraseasonal scale. We estimated high-resolution iWUE from laser-ablation δ13 C analysis of tree-rings (iWUEiso ) and compared it with iWUE derived from gas exchange (iWUEgas ) and eddy covariance (iWUEEC ) data for two Pinus sylvestris forests from 2002 to 2019. By carefully timing iWUEiso via modeled tree-ring growth, iWUEiso aligned well with iWUEgas and iWUEEC at intraseasonal scale. However, year-to-year patterns of iWUEgas , iWUEiso , and iWUEEC were different, possibly due to distinct environmental drivers on iWUE across leaf, tree, and ecosystem scales. We quantified the modification of iWUEiso by postphotosynthetic δ13 C enrichment from leaf sucrose to tree rings and by nonexplicit inclusion of mesophyll and photorespiration terms in photosynthetic discrimination model, which resulted in overestimation of iWUEiso by up to 11% and 14%, respectively. We thus extended the application of tree-ring δ13 C for iWUE estimates to high-resolution intraseasonal scale. The comparison of iWUEgas , iWUEiso , and iWUEEC provides important insights into physiological acclimation of trees across leaf, tree, and ecosystem scales under climate change and improves the upscaling of ecological models.


Subject(s)
Pinus sylvestris , Ecosystem , Water , Carbon Dioxide , Forests , Carbon Isotopes/analysis
4.
Tree Physiol ; 43(5): 694-705, 2023 05 12.
Article in English | MEDLINE | ID: mdl-36519757

ABSTRACT

Stable isotope ratio analysis of tree rings has been widely and successfully applied in recent decades for climatic and environmental reconstructions. These studies were mostly conducted at an annual resolution, considering one measurement per tree ring, often focusing on latewood. However, much more information could be retrieved with high-resolution intra-annual isotope studies, based on the fact that the wood cells and the corresponding organic matter are continuously laid down during the growing season. Such studies are still relatively rare, but have a unique potential for reconstructing seasonal climate variations or short-term changes in physiological plant properties, like water-use efficiency. The reason for this research gap is mostly technical, as on the one hand sub-annual, manual splitting of rings is very tedious, while on the other hand automated laser ablation for high-resolution analyses is not yet well established and available. Here, we give an update on the current status of laser ablation research for analysis of the carbon isotope ratio (δ13C) of wood, describe an easy-to-use laser ablation system, its operation and discuss practical issues related to tree core preparation, including cellulose extraction. The results show that routine analysis with up to 100 laser shot-derived δ13C-values daily and good precision and accuracy (ca. 0.1‰) comparable to conventional combustion in an elemental analyzer are possible. Measurements on resin-extracted wood is recommended as most efficient, but laser ablation is also possible on cellulose extracted wood pieces. Considering the straightforward sample preparation, the technique is therefore ripe for wide-spread application. With this work, we hope to stimulate future progress in the promising field of high-resolution environmental reconstruction using laser ablation.


Subject(s)
Cellulose , Laser Therapy , Carbon Isotopes/analysis , Seasons , Cellulose/analysis , Wood/chemistry , Oxygen Isotopes/analysis
5.
J Exp Bot ; 74(1): 321-335, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36255219

ABSTRACT

Sucrose has a unique role in recording environmental and physiological signals during photosynthesis in its carbon isotope composition (δ13C) and transport of the signal to tree rings. Yet, instead of sucrose, total organic matter (TOM) or water-soluble carbohydrates (WSC) are typically analysed in studies that follow δ13C signals within trees. To study how the choice of organic material may bias the interpretation of δ13C records, we used mature field-grown Scots pine (Pinus sylvestris) to compare for the first time δ13C of different leaf carbon pools with δ13C of assimilates estimated by a chamber-Picarro system (δ13CA_Picarro), and a photosynthetic discrimination model (δ13CA_model). Compared with sucrose, the other tested carbon pools, such as TOM and WSC, poorly recorded the seasonal trends or absolute values of δ13CA_Picarro and δ13CA_model. Consequently, in comparison with the other carbon pools, sucrose δ13C was superior for reconstructing changes in intrinsic water use efficiency (iWUE), agreeing in both absolute values and intra-seasonal variations with iWUE estimated from gas exchange. Thus, deriving iWUE and environmental signals from δ13C of bulk organic matter can lead to misinterpretation. Our findings underscore the advantage of using sucrose δ13C to understand plant physiological responses in depth.


Subject(s)
Pinus sylvestris , Sucrose , Seasons , Water , Photosynthesis , Carbon Isotopes/analysis , Carbon , Plant Leaves/chemistry
6.
Tree Physiol ; 42(12): 2404-2418, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-35849053

ABSTRACT

Incomplete knowledge of carbon (C) allocation dynamics in trees hinders accurate modeling and future predictions of tree growth. We studied C allocation dynamics in a mature Pinus sylvestris L. dominated forest with a novel analytical approach, allowing the first comparison of: (i) magnitude and δ13C of shoot, stem and soil CO2 fluxes (Ashoot, Rstem and Rsoil), (ii) concentration and δ13C of compound-specific and/or bulk non-structural carbohydrates (NSCs) in phloem and roots and (iii) growth of stem and fine roots. Results showed a significant effect of phloem NSC concentrations on tracheid growth, and both variables significantly impacted Rstem. Also, concentrations of root NSCs, especially starch, had a significant effect on fine root growth, although no effect of root NSC concentrations or root growth was detected on Rsoil. Time series analysis between δ13C of Ashoot and δ13C of Rstem or δ13C of Rsoil revealed strengthened C allocation to stem or roots under high C demands. Furthermore, we detected a significant correlation between δ13C of Rstem and δ13C of phloem sucrose and glucose, but not for starch or water-soluble carbohydrates. Our results indicate the need to include C allocation dynamics into tree growth models. We recommend using compound-specific concentration and δ13C analysis to reveal C allocation processes that may not be detected by the conventional approach that utilizes bulk organic matter.


Subject(s)
Carbon , Trees , Soil , Forests , Carbohydrates/analysis , Starch
7.
New Phytol ; 236(6): 2044-2060, 2022 12.
Article in English | MEDLINE | ID: mdl-35575976

ABSTRACT

We explore needle sugar isotopic compositions (δ18 O and δ13 C) in boreal Scots pine (Pinus sylvestris) over two growing seasons. A leaf-level dynamic model driven by environmental conditions and based on current understanding of isotope fractionation processes was built to predict δ18 O and δ13 C of two hierarchical needle carbohydrate pools, accounting for the needle sugar pool size and the presence of an invariant pinitol pool. Model results agreed well with observed needle water δ18 O, δ18 O and δ13 C of needle water-soluble carbohydrates (sugars + pinitol), and needle sugar δ13 C (R2 = 0.95, 0.84, 0.60, 0.73, respectively). Relative humidity (RH) and intercellular to ambient CO2 concentration ratio (Ci /Ca ) were the dominant drivers of δ18 O and δ13 C variability, respectively. However, the variability of needle sugar δ18 O and δ13 C was reduced on diel and intra-seasonal timescales, compared to predictions based on instantaneous RH and Ci /Ca , due to the large needle sugar pool, which caused the signal formation period to vary seasonally from 2 d to more than 5 d. Furthermore, accounting for a temperature-sensitive biochemical 18 O-fractionation factor and mesophyll resistance in 13 C-discrimination were critical. Interpreting leaf-level isotopic signals requires understanding on time integration caused by mixing in the needle sugar pool.


Subject(s)
Pinus sylvestris , Sugars , Seasons , Carbon Isotopes/analysis , Carbohydrates , Plant Leaves/chemistry , Water
8.
Rapid Commun Mass Spectrom ; 34(21): e8877, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32639042

ABSTRACT

RATIONALE: Stable isotope analyses are used on precious archeological and paleontological materials despite their destructive nature, because the information gained by these methods on, for example, feeding habits, migration and health of individuals cannot otherwise be obtained. We approached this issue by devising a new sequential extraction scheme aimed at producing multiple (O, C, N) isotope proxies from small amounts of sample. METHODS: The new extraction scheme includes dissolution of the bone in dilute HNO3 followed by separate treatments of the collagenous and phosphate fractions. The collagen fraction is treated further adopting the methods presented in the literature for collagen extraction, modified to accommodate small sample sizes. The phosphate-containing fraction is purified from organic contaminants by H2 O2 and the phosphate is precipitated as Ag3 PO4 following methods presented in the literature. The use of HF as demineralization agent is also tested. RESULTS: A starting amount of ca 2 mg produced enough material for meaurement by isotope ratio mass spectrometry of the collagen C and N isotope compositions and bone phosphate O isotope composition. We show that the isotopic data obtained from the sequential extraction scheme are comparable with the isotopic composition measured following conventional methodologies that are usually based on 100-500 mg sample sizes. CONCLUSIONS: The new sequential extraction scheme combines the preparation for stable isotope analysis of bone mineral and organic phases, thus minimizing the amounts of sample needed and damage caused on a sample piece. The method may allow analysis of skeletal samples previously excluded from isotope analysis due to material limitations.


Subject(s)
Bone and Bones/chemistry , Collagen/chemistry , Isotopes/analysis , Mass Spectrometry/methods , Phosphates/chemistry , Animals , Goats , Humans , Paleontology
9.
Isotopes Environ Health Stud ; 46(3): 370-91, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20665300

ABSTRACT

In paleohydrogeological studies, the geochemical and isotope geochemical composition of fracture calcites can be utilised to gain information about the evolution of the composition of deep groundwaters in crystalline bedrock. The aim of our study was to investigate the latest hydrogeochemical evolution of groundwaters in the crystalline bedrock at Olkiluoto, which is the planned site for deep geological disposal of spent nuclear fuel. Samples were collected from drill cores intercepting water-conducting fractures at the upper ~500 m of the bedrock. The latest fracture calcite generations were identified using optical microscopy and electron microprobe. They occur as thin ~10-200 µm crusts or small euhedral crystals on open fracture surfaces. These latest calcite fillings were carefully sampled and analysed for the isotopic composition on carbon and oxygen. In addition, fluid inclusion homogenisation temperatures were determined on selected calcite samples. Fluid inclusion data indicated a low temperature of formation for the latest fracture calcite fillings. The δ(18)O values of calcite in these fracture fillings vary only slightly, from-7.3 to-11.5 ‰ (Vienna Pee Dee Belemnite, VPDB), whereas the δ(13)C values fluctuate widely, from-30 to+31 ‰ (VPDB). The δ(13)C values of latest calcite fillings show a systematic pattern with depth, with high and variable δ(13)C values below 50 m. The high δ(13)C values indicate active methanogenesis during the formation of the latest calcite fillings. In contrast, the present-day methanic redox environment is restricted to depths below 200-300 m. It is possible that the shift in the redox environment at Olkiluoto has occurred during infiltration of SO2-(4)-rich marine waters, the latest of such events being the infiltration of brackish waters of the Littorina Sea stage of the Baltic Sea at ~8000-3000 BP.


Subject(s)
Calcium Carbonate/analysis , Carbon Isotopes/analysis , Oxygen Isotopes/analysis , Radioactive Waste , Water Pollutants, Radioactive/analysis , Water Supply/analysis , Calcium Carbonate/chemistry , Environmental Monitoring , Finland , Oxidation-Reduction , Sulfates/chemistry , Temperature , Water Supply/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...