Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 88(14): 10147-10155, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37402179

ABSTRACT

An investigation into the sensitivity of reaction conditions to a highly utilized protocol has been reported, wherein the mono-Boc functionalization of prolinol could be controlled for the exclusive synthesis of either N-Boc, O-Boc, or oxazolidinone derivatives. Mechanistic investigation revealed that the elementary steps could possibly be controlled by (a) a requisite base to recognize the differently acidic sites (NH and OH) for the formation of the conjugate base, which reacts with the electrophile, and (b) the difference in nucleophilicity of the conjugate basic sites. Herein, a successful chemoselective functionalization of the nucleophilic sites of prolinol by employing a suitable base is reported. This has been achieved by exploiting the relative acidity difference of NH and OH along with the reversed nucleophilicity of the corresponding conjugate bases N- and O-. This protocol has also been used for the synthesis of several O-functionalized prolinol derived organocatalysts, few of which have been newly reported.

2.
Chemistry ; 29(45): e202300675, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37276362

ABSTRACT

Herein, organocatalytically achieved polarity reversal of cationic bromine is presented. The proven bromocation source N-bromosuccinimide (NBS) was converted to a superior bromoanion reagent by H/Br exchange with a secondary amine, substantiated with spectroscopic and computational evidence. The concept has further been used in a successfully accelerated organocatalyzed dibromination of olefins in a non-hazardous, commercially viable process with a wide range of substrate scope. The reactivity of key entities observed through NMR kinetics and reaction acceleration using only 10 mol % of catalyst account for its major success. The nucleophilicity of the bromoanion was found to be superior in comparison to other nucleophiles such as MeOH and H2 O also the protocol dominates over the competing allylic bromination reaction.

3.
3 Biotech ; 12(9): 212, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35959165

ABSTRACT

Enterobacter ludwigii is an oral growing bacteria responsible for teeth blackening. It can form biofilm. The exopolysaccharide (EPS) cluster associated with biofilm formation was isolated using ethanol precipitation and the formaldehyde-sodium hydroxide method. The chemical characterization of EPS was done using UV spectroscopy, Fourier transforms infrared spectroscopy, and gas chromatography-mass spectrometry. Energy-dispersive X-ray spectroscopy (EDS) analysis of  EPS has revealed the presence of carbon > boron > nitrogen > phosphorous > calcium > sulfur > iron > potassium > magnesium. The carbon content was quite high (72.72-77.63%) in the EPS due to polysaccharide composition. The study showed the presence of different monosaccharides glucose (16.91%), galactose (4.25%), mannose (4.04%), and xylose (8.06%) as the major components of EPS. It appears such as thin filaments with three-dimensional structure, compact, irregular lumps and stacked flakes of polysaccharides. The EPS was also examined using different 1D, 2D Nuclear Magnetic Resonance (NMR) spectroscopy techniques (1H NMR, 13C NMR, 1H-1H COSY, 1H-13C HSQC, 1H-13C HMBC) with different deuterated solvents (Protic and aprotic solvents for exchangeable protons), which showed eight distinguished monomers (seven confirmed by HSQC spectrum and one from 1H spectrum). Semi-crystalline nature and thermal stability were confirmed by X-ray diffractogram and differential scanning calorimetry analysis, respectively. The EPS further shows antioxidant potential in a concentration-dependent manner. It can form a stable emulsion against different edible oil that makes it promising alternative for use in food, and pharmaceutical industries. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03279-z.

4.
Inorg Chem ; 58(22): 15291-15302, 2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31693354

ABSTRACT

Layered CuSbS2 and related ternary metal chalcogenides have attracted huge research interest due to their potential applications in sustainable energy storage, photovoltaics, and related area. Here, we report facile synthesis of CuSbS2 nanoplates and CuSbS2-Cu3SbS4 nanocomposite using hot injection method with varying sulfur precursors. Elemental sulfur (S8) as sulfur precursor results in nanoplates of pure CuSbS2, while thioacetamide (TA) as sulfur source gives nanocomposite with Cu3SbS4 nanoparticle decorated on the surface of CuSbS2 nanoplates. The ease of reduction of TA as compared to sulfur at high temperature, in the presence of oleylamine, promotes the oxidation of antimony from (III) to (V) state and the formation of Cu3SbS4 phase containing Sb(V). Raman scattering study confirms the presence of Cu3SbS4 phase in CuSbS2-Cu3SbS4 nanocomposite. X-ray photoemission spectroscopy study on CuSbS2 nanoplates and CuSbS2-Cu3SbS4 nanocomposite confirms the desired valence state of the constituent elements. Electrochemical properties measurement shows better specific capacitance for CuSbS2-Cu3SbS4 nanocomposite (151 F/g) as compared to CuSbS2 nanoplates along with long-term cyclic stability with 68.2% capacitance retention.

5.
Angew Chem Int Ed Engl ; 55(2): 669-73, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26603376

ABSTRACT

Tertiary methyl-substituted stereocenters are present in numerous biologically active natural products. Reported herein is a catalytic enantioselective method for accessing these chiral building blocks using the Mukaiyama-Michael reaction between silyl ketene thioacetals and acrolein. To enable remote enantioface control on the nucleophile, a new iminium catalyst, optimized by three-parameter tuning and by identifying substituent effects on enantioselectivity, was designed. The catalytic process allows rapid access to chiral thioesters, amides, aldehydes, and ketones bearing an α-methyl stereocenter with excellent enantioselectivities, and allowed rapid access to the C4-C13 segment of (-)-bistramide A. DFT calculations rationalized the observed sense and level of enantioselectivity.

6.
Chemistry ; 20(20): 5983-93, 2014 May 12.
Article in English | MEDLINE | ID: mdl-24692273

ABSTRACT

The scope of the enantioselective Mukaiyama-Michael reactions catalyzed by trans-2,5-diphenylpyrrolidine has been expanded to include both α- and ß-substituted enals. However, the rationalization of the observed enantioselectivity is far from obvious since the catalyst is not very sterically hindered. DFT calculations were carried out to rationalize the observed stereoselectivities. Transition states of the C-C bond formation between iminium intermediates and silyloxyfurans were located and their relative energies were used to estimate the stereoselectivity data. We find excellent agreement between the predicted and observed stereoselectivities. The analysis of intermolecular forces reveals that the enantioselectivity is mostly due to stabilizing noncovalent interactions between the reacting partners, not due to steric hindrance. The role of attractive noncovalent interactions in enantioselective catalysis may be underappreciated.

7.
Angew Chem Int Ed Engl ; 51(52): 13144-8, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23150243

ABSTRACT

Pause and play: dihydrooxazine oxides are stable intermediates that are protonated directly, without the intermediacy of the zwitterions, in organocatalytic Michael additions of aldehydes and nitroalkenes (see scheme, R=alkyl). Protonation of these species explains both the role of the acid co-catalyst in these reactions, and the observed stereochemistry when the reaction is conducted with α-alkylnitroalkenes.

8.
Org Lett ; 14(4): 1086-9, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22296172

ABSTRACT

Enantioselective iminium-catalyzed reactions with acrolein and methacrolein are rare. A catalytic enantioselective Mukaiyama-Michael reaction that readily accepts acrolein or methacrolein as substrates, affording the products in good yields and 91-97% ee, is presented. As an application of the methodology, an enantioselective route to the key C17-C28 segment of the pectenotoxin using the Mukaiyama-Michael reaction as the key step is described.


Subject(s)
Acrolein/analogs & derivatives , Acrolein/chemistry , Marine Toxins/chemical synthesis , Pyrans/chemical synthesis , Catalysis , Models, Molecular , Molecular Structure , Stereoisomerism
9.
J Fluor Chem ; 129(9): 781-784, 2008 Sep.
Article in English | MEDLINE | ID: mdl-19727323

ABSTRACT

4-Fluoroprolines are among the most useful nonnatural amino acids in chemical biology. Here, practical routes are reported for the synthesis of the 2S,4R, 2S,4S, and 2R,4S diastereomers of 4-fluoroproline. Each route starts with (2S,4R)-4-hydroxyproline, which is a prevalent component of collagen and hence readily available, and uses a fluoride salt to install the fluoro group. Hence, the routes provide process-scale access to these useful nonnatural amino acids.

SELECTION OF CITATIONS
SEARCH DETAIL
...