Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 367(1): 234-51, 2006 Aug 15.
Article in English | MEDLINE | ID: mdl-16460784

ABSTRACT

In this study, a feed-forward back-propagation neural network (BPNN) was developed and applied to predict pesticide concentrations in groundwater monitoring wells. Pesticide concentration data are challenging to analyze because they tend to be highly censored. Input data to the neural network included the categorical indices of depth to aquifer material, pesticide leaching class, aquifer sensitivity to pesticide contamination, time (month) of sample collection, well depth, depth to water from land surface, and additional travel distance in the saturated zone (i.e., distance from land surface to midpoint of well screen). The output of the neural network was the total pesticide concentration detected in the well. The model prediction results produced good agreements with observed data in terms of correlation coefficient (R=0.87) and pesticide detection efficiency (E=89%), as well as good match between the observed and predicted "class" groups. The relative importance of input parameters to pesticide occurrence in groundwater was examined in terms of R, E, mean error (ME), root mean square error (RMSE), and pesticide occurrence "class" groups by eliminating some key input parameters to the model. Well depth and time of sample collection were the most sensitive input parameters for predicting the pesticide contamination potential of a well. This infers that wells tapping shallow aquifers are more vulnerable to pesticide contamination than those wells tapping deeper aquifers. Pesticide occurrences during post-application months (June through October) were found to be 2.5 to 3 times higher than pesticide occurrences during other months (November through April). The BPNN was used to rank the input parameters with highest potential to contaminate groundwater, including two original and five ancillary parameters. The two original parameters are depth to aquifer material and pesticide leaching class. When these two parameters were the only input parameters for the BPNN, they were not able to predict contamination potential. However, when they were used with other parameters, the predictive performance efficiency of the BPNN in terms of R, E, ME, RMSE, and pesticide occurrence "class" groups increased. Ancillary data include data collected during the study such as well depth and time of sample collection. The BPNN indicated that the ancillary data had more predictive power than the original data. The BPNN results will help researchers identify parameters to improve maps of aquifer sensitivity to pesticide contamination.


Subject(s)
Environmental Monitoring , Fresh Water/analysis , Neural Networks, Computer , Pesticides/analysis , Water Pollutants, Chemical/analysis , Water Supply/standards , Environmental Monitoring/methods , Environmental Monitoring/statistics & numerical data , Illinois , Predictive Value of Tests , Seasons
2.
Water Res ; 39(12): 2505-16, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15990145

ABSTRACT

Riverbank filtration (RBF) is a low-cost water treatment technology in which surface water contaminants are removed or degraded as the infiltrating water moves from the river/lake to the pumping wells. The removal or degradation of contaminants is a combination of physicochemical and biological processes. This paper illustrates the development and application of three types of artificial neural networks (ANNs) to estimate the effectiveness of two RBF facilities in the US. The feed-forward back-propagation network (BPN) and radial basis function network (RBFN) model prediction results produced excellent agreement with measured data at a correlation coefficient above 0.99 for filtrate water quality parameters, including temperature as well as turbidity, heterotrophic bacteria, and coliform removal. In comparison, the fuzzy inference system network (FISN) predicted only temperature and bacteria removal with reasonable accuracy. It is shown that the predictive performances of the ANNs depend on the model structure and model inputs.


Subject(s)
Neural Networks, Computer , Water Movements , Water Purification/methods , Water Supply , Bacteria/isolation & purification , Enterobacteriaceae/isolation & purification , Models, Biological , Nephelometry and Turbidimetry , Temperature , Time Factors , Ultrafiltration
SELECTION OF CITATIONS
SEARCH DETAIL
...