Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36904822

ABSTRACT

With continuous advancements in Internet technology and the increased use of cryptographic techniques, the cloud has become the obvious choice for data sharing. Generally, the data are outsourced to cloud storage servers in encrypted form. Access control methods can be used on encrypted outsourced data to facilitate and regulate access. Multi-authority attribute-based encryption is a propitious technique to control who can access encrypted data in inter-domain applications such as sharing data between organizations, sharing data in healthcare, etc. The data owner may require the flexibility to share the data with known and unknown users. The known or closed-domain users may be internal employees of the organization, and unknown or open-domain users may be outside agencies, third-party users, etc. In the case of closed-domain users, the data owner becomes the key issuing authority, and in the case of open-domain users, various established attribute authorities perform the task of key issuance. Privacy preservation is also a crucial requirement in cloud-based data-sharing systems. This work proposes the SP-MAACS scheme, a secure and privacy-preserving multi-authority access control system for cloud-based healthcare data sharing. Both open and closed domain users are considered, and policy privacy is ensured by only disclosing the names of policy attributes. The values of the attributes are kept hidden. Characteristic comparison with similar existing schemes shows that our scheme simultaneously provides features such as multi-authority setting, expressive and flexible access policy structure, privacy preservation, and scalability. The performance analysis carried out by us shows that the decryption cost is reasonable enough. Furthermore, the scheme is demonstrated to be adaptively secure under the standard model.


Subject(s)
Confidentiality , Privacy , Humans , Cloud Computing , Computer Security , Information Dissemination , Delivery of Health Care
2.
Comput Biol Med ; 141: 105024, 2022 02.
Article in English | MEDLINE | ID: mdl-34815067

ABSTRACT

BACKGROUND AND OBJECTIVE: The world is currently facing a global emergency due to COVID-19, which requires immediate strategies to strengthen healthcare facilities and prevent further deaths. To achieve effective remedies and solutions, research on different aspects, including the genomic and proteomic level characterizations of SARS-CoV-2, are critical. In this work, the spatial representation/composition and distribution frequency of 20 amino acids across the primary protein sequences of SARS-CoV-2 were examined according to different parameters. METHOD: To identify the spatial distribution of amino acids over the primary protein sequences of SARS-CoV-2, the Hurst exponent and Shannon entropy were applied as parameters to fetch the autocorrelation and amount of information over the spatial representations. The frequency distribution of each amino acid over the protein sequences was also evaluated. In the case of a one-dimensional sequence, the Hurst exponent (HE) was utilized due to its linear relationship with the fractal dimension (D), i.e. D+HE=2, to characterize fractality. Moreover, binary Shannon entropy was considered to measure the uncertainty in a binary sequence then further applied to calculate amino acid conservation in the primary protein sequences. RESULTS AND CONCLUSION: Fourteen (14) SARS-CoV protein sequences were evaluated and compared with 105 SARS-CoV-2 proteins. The simulation results demonstrate the differences in the collected information about the amino acid spatial distribution in the SARS-CoV-2 and SARS-CoV proteins, enabling researchers to distinguish between the two types of CoV. The spatial arrangement of amino acids also reveals similarities and dissimilarities among the important structural proteins, E, M, N and S, which is pivotal to establish an evolutionary tree with other CoV strains.


Subject(s)
COVID-19 , SARS-CoV-2 , Amino Acid Sequence , Amino Acids , Humans , Proteomics
3.
Big Data ; 9(4): 303-321, 2021 08.
Article in English | MEDLINE | ID: mdl-34271836

ABSTRACT

In this study, we set up a scalable framework for large-scale data processing and analytics using the big data framework. The popular classification methods are implemented, tuned, and evaluated by using intrusion datasets. The objective is to select the best classifier after optimizing the hyper-parameters. We observed that the decision tree (DT) approach outperforms compared with other methods in terms of classification accuracy, fast training time, and improved average prediction rate. Therefore, it is selected as a base classifier in our proposed ensemble approach to study class imbalance. As the intrusion datasets are imbalanced, most of the classification techniques are biased toward the majority class. The misclassification rate is more in the case of the minority class. An ensemble-based method is proposed by using K-Means, RUSBoost, and DT approaches to mitigate the class imbalance problem; empirically investigate the impact of class imbalance on classification approaches' performance; and compare the result by using popular performance metrics such as Balanced Accuracy, Matthews Correlation Coefficient, and F-Measure, which are more suitable for the assessment of imbalanced datasets.


Subject(s)
Algorithms , Big Data
4.
PeerJ Comput Sci ; 7: e578, 2021.
Article in English | MEDLINE | ID: mdl-34239972

ABSTRACT

In the traditional irrigation process, a huge amount of water consumption is required which leads to water wastage. To reduce the wasting of water for this tedious task, an intelligent irrigation system is urgently needed. The era of machine learning (ML) and the Internet of Things (IoT) brings it is a great advantage of building an intelligent system that performs this task automatically with minimal human effort. In this study, an IoT enabled ML-trained recommendation system is proposed for efficient water usage with the nominal intervention of farmers. IoT devices are deployed in the crop field to precisely collect the ground and environmental details. The gathered data are forwarded and stored in a cloud-based server, which applies ML approaches to analyze data and suggest irrigation to the farmer. To make the system robust and adaptive, an inbuilt feedback mechanism is added to this recommendation system. The experimentation, reveals that the proposed system performs quite well on our own collected dataset and National Institute of Technology (NIT) Raipur crop dataset.

SELECTION OF CITATIONS
SEARCH DETAIL
...