Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935327

ABSTRACT

BACKGROUND: Combining the sharp dose fall off feature of beta-emitting 106Ru/106Rh radionuclide with larger penetration depth feature of photon-emitting125I radionuclide in a bi-radionuclide plaque, prescribed dose to the tumor apex can be delivered while maintaining the tumor dose uniformity and sparing the organs at risk. The potential advantages of bi-radionuclide plaque could be of interest in context of ocular brachytherapy. PURPOSE: The aim of the study is to evaluate the dosimetric advantages of a proposed bi-radionuclide plaque for two different designs, consisting of indigenous 125I seeds and 106Ru/106Rh plaque, using Monte Carlo technique. The study also explores the influence of other commercial 125I seed models and presence or absence of silastic/acrylic seed carrier on the calculated dose distributions. The study further included the calculation of depth dose distributions for the bi-radionuclide eye plaque for which experimental data are available. METHODS: The proposed bi-radionuclide plaque consists of a 1.2-mm-thick silver (Ag) spherical shell with radius of curvature of 12.5 mm, 20 µm-thick-106Ru/106Rh encapsulated between 0.2 mm Ag disk, and a 0.1-mm-thick Ag window, and water-equivalent gel containing 12 symmetrically arranged 125I seeds. Two bi-radionuclide plaque models investigated in the present study are designated as Design I and Design II. In Design I, 125I seeds are placed on the top of the plaque, while in Design II 106Ru/106Rh source is positioned on the top of the plaque. In Monte Carlo calculations, the plaque is positioned in a spherical water phantom of 30 cm diameter. RESULTS: The proposed bi-radionuclide eye plaque demonstrated superior dose distributions as compared to 125I or 106Ru plaque for tumor thicknesses ranges from 5 to 10 mm. Amongst the designs, dose at a given voxel for Design I is higher as compared to the corresponding voxel dose for Design II. This difference is attributed to the higher degree of attenuation of 125I photons in Ag as compared to beta particles. Influence of different 125I seed models on the normalized lateral dose profiles of Design I (in the absence of carrier) is negligible and within 5% on the central axis depth dose distribution as compared to the corresponding values of the plaque that has indigenous 125I seeds. In the presence of a silastic/acrylic seed carrier, the normalized central axis dose distributions of Design I are smaller by 3%-12% as compared to the corresponding values in the absence of a seed carrier. For the published bi-radionuclide plaque model, good agreement is observed between the Monte Carlo-calculated and published measured depth dose distributions for clinically relevant depths. CONCLUSION: Regardless of the type of 125I seed model utilized and whether silastic/acrylic seed carrier is present or not, Design I bi-radionuclide plaque offers superior dose distributions in terms of tumor dose uniformity, rapid dose fall off and lesser dose to nearby critical organs at risk over the Design II plaque. This shows that Design I bi-radionuclide plaque could be a promising alternative to 125I plaque for treatment of tumor sizes in the range 5 to 10 mm.

2.
J Radiol Prot ; 41(2)2021 06 01.
Article in English | MEDLINE | ID: mdl-33690175

ABSTRACT

170Tm is being explored as a source for applications in brachytherapy. Although it has adequate physical properties, such as a short half-life (128.6 d), high specific activity and a mean photon energy of about 66 keV, it has a drawback of low photon yield (only about six photon emissions/100 beta emissions). The objective of this work is to study the dosimetric characteristics of a locally developed170Tm brachytherapy seed source using the Monte Carlo-based EGSnrc code system. In this study, we calculate the dose rate constant, air-kerma strength, radial dose function, anisotropic function and 2D dose-rate distributions in water. Separate simulations are carried out by considering the photon (gamma and characteristic x-ray) and beta spectra of the source. For regions close to the source (surface of the source

Subject(s)
Brachytherapy , Beta Particles , Monte Carlo Method , Photons , Radiometry , Radiotherapy Dosage
3.
J Radiol Prot ; 39(1): 54-70, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30523912

ABSTRACT

This paper describes the evaluation of dosimetry characteristics of an in-house developed 177Lu skin patch source for treatment of non-melanoma skin cancer. A 177Lu skin patch source based on Nafion-115 membrane backbone containing 3.46 ± 0.01 mCi of activity was used. Activity measurement of the patch source was based on gamma ray spectrometry using a HPGe detector. The efficiencies of the HPGe detector were fitted using an orthogonal polynomial function. The absorbed dose rate to water at 5 µm depth in water was determined using an extrapolation chamber, EBT3 Gafchromic film and compared with Monte Carlo methods. The correction factors such as Bragg-Gray stopping power ratio of water-to-air and chamber wall material being different from water, needed to be applied on measurements for establishing the dose rate at 5 µm depth, were calculated using the Monte Carlo method. Absorbed dose rate at 5 µm depth in water (surface dose rate) measured using an extrapolation chamber and EBT3 Gafchromic film were 9.9 ± 0.7 and 8.2 ± 0.1 Gy h-1 mCi-1 respectively for the source activity of 3.46 ± 0.01 mCi. The surface dose rate calculated using the Monte Carlo method was 8.7 ± 0.2 Gy h-1 mCi-1, which agrees reasonably well with measurement. The measured dose rate per mCi offers scope for ascertaining treatment time required to deliver the dose for propitious therapeutic outcome. Additionally, on-axis depth dose and lateral dose profiles at 5 µm and 1 mm depth in water phantom were also calculated using the Monte Carlo method.


Subject(s)
Brachytherapy/methods , Lutetium/therapeutic use , Monte Carlo Method , Radioisotopes/therapeutic use , Radiotherapy Dosage , Models, Theoretical , Radiometry , Transdermal Patch
4.
J Med Phys ; 41(2): 115-22, 2016.
Article in English | MEDLINE | ID: mdl-27217623

ABSTRACT

Clinical application using high-dose rate (HDR) (192)Ir sources in remote afterloading technique is a well-established treatment method. In this direction, Board of Radiation and Isotope Technology (BRIT) and Bhabha Atomic Research Centre, India, jointly indigenously developed a remote afterloading machine and (192)Ir HDR source. The two-dimensional (2D) dose distribution and dosimetric parameters of the BRIT (192)Ir HDR source are generated using EGSnrc Monte Carlo code system in a 40 cm dia × 40 cm height cylindrical water phantom. The values of air-kerma strength and dose rate constant for BRIT (192)Ir HDR source are 9.894 × 10(-8) ± 0.06% UBq(-1) and 1.112 ± 0.11% cGyh(-1)U(-1), respectively. The values of radial dose function (gL(r)) of this source compare well with the corresponding values of BEBIG, Flexisource, and GammaMed 12i source models. This is because of identical active lengths of the sources (3.5 mm) and the comparable phantom dimensions. A comparison of gL(r) values of BRIT source with microSelectron-v1 show differences about 2% at r = 6 cm and up to 13% at r = 12 cm, which is due to differences in phantom dimensions involved in the calculations. The anisotropy function of BRIT (192)Ir HDR source is comparable with the corresponding values of microSelectron-v1 (classic) HDR source.

5.
J Med Phys ; 40(1): 13-7, 2015.
Article in English | MEDLINE | ID: mdl-26150682

ABSTRACT

Skin cancer treatment involving (32)P source is an easy, less expensive method of treatment limited to small and superficial lesions of approximately 1 mm deep. Bhabha Atomic Research Centre (BARC) has indigenously developed (32)P nafion-based patch source (1 cm × 1 cm) for treating skin cancer. For this source, the values of dose per unit activity at different depths including dose profiles in water are calculated using the EGSnrc-based Monte Carlo code system. For an initial activity of 1 Bq distributed in 1 cm(2) surface area of the source, the calculated central axis depth dose values are 3.62 × 10(-10) GyBq(-1) and 8.41 × 10(-11) GyBq(-1)at 0.0125 and 1 mm depths in water, respectively. Hence, the treatment time calculated for delivering therapeutic dose of 30 Gy at 1 mm depth along the central axis of the source involving 37 MBq activity is about 2.7 hrs.

7.
J Med Phys ; 38(4): 158-64, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24672149

ABSTRACT

Investigation of solid phantom materials such as solid water, virtual water, plastic water, RW1, polystyrene, and polymethylmethacrylate (PMMA) for their equivalence to liquid water at (137)Cs energy (photon energy of 662 keV) under full scatter conditions is carried out using the EGSnrc Monte Carlo code system. Monte Carlo-based EGSnrc code system was used in the work to calculate distance-dependent phantom scatter corrections. The study also includes separation of primary and scattered dose components. Monte Carlo simulations are carried out using primary particle histories up to 5 × 10(9) to attain less than 0.3% statistical uncertainties in the estimation of dose. Water equivalence of various solid phantoms such as solid water, virtual water, RW1, PMMA, polystyrene, and plastic water materials are investigated at (137)Cs energy under full scatter conditions. The investigation reveals that solid water, virtual water, and RW1 phantoms are water equivalent up to 15 cm from the source. Phantom materials such as plastic water, PMMA, and polystyrene phantom materials are water equivalent up to 10 cm. At 15 cm from the source, the phantom scatter corrections are 1.035, 1.050, and 0.949 for the phantoms PMMA, plastic water, and polystyrene, respectively.

9.
Radiol Phys Technol ; 2(2): 198-204, 2009 Jul.
Article in English | MEDLINE | ID: mdl-20821120

ABSTRACT

Titanium-encapsulated (125)I brachytherapy sources are in use for treatment of the eye, brain, and head and neck region, and for early stage prostate cancer. The photoelectric interaction of (125)I photons with titanium encapsulation generates Ti K X-rays (approximately 5 keV). According to the National Institute of Standards and Technology (NIST) 1999 air-kerma strength, S(k), standard, these X-rays should be excluded from S (k). We used the EGSnrc Monte Carlo code system to calculate the S(k) (including the contribution of approximately 5-keV X-rays), dose rate constant, and radial dose function for five different (125)I source models. Depending upon the source model, the contribution of 5-keV Ti X-rays to S(k) varies between 17.1 and 18.7%. Including these X-rays as part of S(k) would result in underestimation of the dose rate constant by up to 19%. The radial dose functions of the investigated sources are comparable to published studies that are based on an updated photon cross-section dataset.


Subject(s)
Air , Brachytherapy/methods , Monte Carlo Method , Radiation Dosage , Iodine Radioisotopes/therapeutic use , Photons , Radiotherapy Dosage , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL
...