Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mycorrhiza ; 32(5-6): 361-371, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36161535

ABSTRACT

Arbuscular mycorrhizal (AM) fungi are ubiquitous mutualistic symbionts of most terrestrial plants and many complete their lifecycles underground. Whole genome analysis of AM fungi has long been restricted to species and strains that can be maintained under controlled conditions that facilitate collection of biological samples. There is some evidence suggesting that AM fungi can adapt to culture resulting in phenotypic and possibly also genotypic changes in the fungi. In this study, we used field isolated spores of AM fungi and identified them as Funneliformis geosporum based on morphology and phylogenetic analyses. We separately assembled the genomes of two representative spores using DNA sequences of 19 and 22 individually amplified nuclei. The genomes were compared with previously published data from other members of Glomeraceae including two strains of F. mosseae. No significant differences were observed among the species in terms of gene content, while the single nucleotide polymorphism density was higher in the strains of F. geosporum than in the strains of F. mosseae. In this study, we demonstrate that it is possible to sequence and assemble genomes from AM fungal spores sampled in the field, which opens up the possibility to include uncultured AM fungi in phylogenomic and comparative genomic analysis and to study genomic variation in natural populations of these important plant symbionts.


Subject(s)
Glomeromycota , Mycorrhizae , Fungi , Glomeromycota/genetics , Mycorrhizae/genetics , Phylogeny , Plants , Spores, Fungal
2.
BMC Plant Biol ; 20(1): 455, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33023496

ABSTRACT

BACKGROUND: With the expanding ash dieback epidemic that has spread across the European continent, an improved functional understanding of the disease development in afflicted hosts is needed. The study investigated whether differences in necrosis extension between common ash (Fraxinus excelsior) trees with different levels of susceptibility to the fungus Hymenoscyphus fraxineus are associated with, and can be explained by, the differences in gene expression patterns. We inoculated seemingly healthy branches of each of two resistant and susceptible ash genotypes with H. fraxineus grown in a common garden. RESULTS: Ten months after the inoculation, the length of necrosis on the resistant genotypes were shorter than on the susceptible genotypes. RNA sequencing of bark samples collected at the border of necrotic lesions and from healthy tissues distal to the lesion revealed relatively limited differences in gene expression patterns between susceptible and resistant genotypes. At the necrosis front, only 138 transcripts were differentially expressed between the genotype categories while 1082 were differentially expressed in distal, non-symptomatic tissues. Among these differentially expressed genes, several genes in the mevalonate (MVA) and iridoid pathways were found to be co-regulated, possibly indicating increased fluxes through these pathways in response to H. fraxineus. Comparison of transcriptional responses of symptomatic and non-symptomatic ash in a controlled greenhouse experiment revealed a relatively small set of genes that were differentially and concordantly expressed in both studies. This gene-set included the rate-limiting enzyme in the MVA pathway and a number of transcription factors. Furthermore, several of the concordantly expressed candidate genes show significant similarity to genes encoding players in the abscisic acid- or Jasmonate-signalling pathways. CONCLUSIONS: A set of candidate genes, concordantly expressed between field and greenhouse experiments, was identified. The candidates are associated with hormone signalling and specialized metabolite biosynthesis pathways indicating the involvement of these pathways in the response of the host to infection by H. fraxineus.


Subject(s)
Ascomycota , Fraxinus/genetics , Fraxinus/microbiology , Genes, Plant , Plant Diseases/genetics , Plant Diseases/microbiology , Disease Susceptibility , Gene Expression Profiling , Plant Necrosis and Chlorosis , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...