Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Ecotoxicology ; 31(5): 700-713, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35320470

ABSTRACT

The toxicity of four herbicides in mixture (alachlor, diuron, des-isopropyl-atrazine and simazine) on the growth and the photosynthesis parameters of two marine diatoms Pseudo-niszchia mannii and Chaetoceros decipiens have been investigated for 9 days in monoculture and co-culture tests. The catalase (CAT) and guaiacol peroxidase (GPX) were also monitored to assess the oxidative stress response. In single-species assays, while both species displayed no affected instantaneous growth rate by herbicides, their physiological responses were different. Chl a content of P. mannii significantly decreased upon herbicide exposure, due probably to pigment destruction or inhibition of their synthesis. This decrease was associated with a reduction in the chlorophyll fluorescence parameters (ABS0/RC, TR0/RC, ET0/RC and DI0/RC). In contrast, C. decipiens maintained an effective photosynthetic performance under herbicide exposure, as Chl a per cell content and the specific energy fluxes per reaction center remained unchanged relative to control values. GPX activity was significantly higher in contaminated P. mannii and C. decipiens monocultures than in controls at early herbicide exposure (1 day), whereas a significant induction of CAT activity occurred later (from day 3 for C. decipiens and at day 9 for P. mannii) in response to herbicides. In control co-culture, P. mannii was eliminated by C. decipiens. As observed in the monoculture, the herbicides did not affect the photosynthetic performance of C. decipiens in co-culture, but significantly reduced its instantaneous growth rate. The oxidative stress response in co-culture has similar trends to that of C. decipiens in monoculture, but the interspecies competition likely resulted in higher CAT activity under herbicide exposure. Results of this study suggest that herbicide toxicity for marine diatoms might be amplified by interspecies interactions in natural communities, which might lead to different physiological and growth responses.


Subject(s)
Diatoms , Herbicides , Water Pollutants, Chemical , Coculture Techniques , Diatoms/physiology , Herbicides/toxicity , Oxidative Stress , Photosynthesis , Water Pollutants, Chemical/toxicity
2.
Ecotoxicol Environ Saf ; 214: 112082, 2021 May.
Article in English | MEDLINE | ID: mdl-33721579

ABSTRACT

This study investigates the effects of polycyclic aromatic hydrocarbons (PAHs) on two potentially toxic Pseudo-nitzschia hasleana and P. mannii, isolated from a PAH contaminated marine environment. Both species, maintained in non-axenic cultures, have been exposed during 144 h to increasing concentrations of a 15 PAHs mixture. Analysis of the domoic acid, showed very low concentrations. Dose-response curves for growth and photosynthesis inhibition were determined. Both species have maintained their growth until the end of incubation even at the highest concentration tested (120 µg l-1), Nevertheless, P mannii showed faster growth and seemed to be more tolerant than P. hasleana. To reduce PAH toxicity, both species have enhanced their biovolume, with a higher increase for P. mannii relative to P hasleana. Both species were also capable of bio-concentrating PAHs and were able to degrade them probably in synergy with their associated bacteria. The highest biodegradation was observed for P. mannii, which could harbored more efficient hydrocarbon-degrading bacteria. This study provides the first evidence that PAHs can control the growth and physiology of potentially toxic diatoms. Future studies should investigate the bacterial community associated with Pseudo-nitzschia species, as responses to pollutants or to other environmental stressors could be strongly influence by associated bacteria.


Subject(s)
Diatoms/physiology , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity , Adaptation, Physiological , Bacteria , Biodegradation, Environmental , Diatoms/metabolism , Kainic Acid/analogs & derivatives , Photosynthesis , Polycyclic Aromatic Hydrocarbons/metabolism , Water Pollutants, Chemical/metabolism
3.
Haematologica ; 105(8): 2044-2055, 2020 08.
Article in English | MEDLINE | ID: mdl-31780635

ABSTRACT

Hematopoietic stem cells are responsible for life-long blood cell production and are highly sensitive to exogenous stresses. The effects of low doses of ionizing radiations on radiosensitive tissues such as the hematopoietic tissue are still unknown despite their increasing use in medical imaging. Here, we study the consequences of low doses of ionizing radiations on differentiation and self-renewal capacities of human primary hematopoietic stem/progenitor cells (HSPC). We found that a single 20 mGy dose impairs the hematopoietic reconstitution potential of human HSPC but not their differentiation properties. In contrast to high irradiation doses, low doses of irradiation do not induce DNA double strand breaks in HSPC but, similar to high doses, induce a rapid and transient increase of reactive oxygen species (ROS) that promotes activation of the p38MAPK pathway. HSPC treatment with ROS scavengers or p38MAPK inhibitor prior exposure to 20 mGy irradiation abolishes the 20 mGy-induced defects indicating that ROS and p38MAPK pathways are transducers of low doses of radiation effects. Taken together, these results show that a 20 mGy dose of ionizing radiation reduces the reconstitution potential of HSPC suggesting an effect on the self-renewal potential of human hematopoietic stem cells and pinpointing ROS or the p38MAPK as therapeutic targets. Inhibition of ROS or the p38MAPK pathway protects human primary HSPC from low-dose irradiation toxicity.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Cell Differentiation , Humans , Radiation, Ionizing , Reactive Oxygen Species
4.
Ecotoxicology ; 25(6): 1211-25, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27225994

ABSTRACT

The effects of inorganic and organic nitrogen supply on the growth and domoic acid (DA) production of Pseudo-nitzschia cf. seriata and Pseudo-nitzschia calliantha from Bizerte Lagoon (SW Mediterranean Sea) were studied during field and laboratory experiments. Nitrogen enrichments (40 µM NO3 (-); 10 µM NH4 (+); 20 µM CH4N2O) and a control, with no added N, were carried out in separate carboys with seawater collected from Bizerte Lagoon. In the field experiments, all N-enrichments resulted in significant increases in chlorophyll a concentration, and maintained exponential growth until the end of the experiment. The initial diatom community was dominated by a bloom of P. cf. seriata (9.3 × 10(5) cells l(-1)). After 6 days of incubation, the abundance of P. cf. seriata was greatest in the urea addition (1.52 × 10(6) cells l(-1)), compared to the ammonium treatment (0.47 × 10(6) cells l(-1)), nitrate treatment (0.70 × 10(6) cells l(-1)) and control (0.36 × 10(6) cells l(-1)). The specific growth rates, calculated from increases in chlorophyll a and cell abundance, were statistically different across all treatments, with the highest in the urea and nitrate additions. Similar results were obtained from the laboratory experiments. These were carried out with P. calliantha isolated from Bizerte Lagoon and grown in f/2 medium enriched with 40 µM nitrate, 10 µM ammonium and 20 µM urea. The exponential growth rate was significantly faster for the cells cultured with urea (1.50 d(-1)) compared to the nitrate (0.90 d(-1)) and ammonium (0.80 d(-1)) treatments and the control (0.40 d(-1)). Analysis of DA, performed at the beginning and the end of the both experiments in all treatments, revealed very low concentrations (below the limit of quantification, 0.02- 1.310(-7) pg cell(-1), respectively).The field and laboratory experiments demonstrate that P.cf. seriata and P. calliantha are able to grow efficiently on the three forms of N, but with a preference for urea.


Subject(s)
Diatoms/physiology , Nitrogen/toxicity , Seawater/chemistry , Water Pollutants, Chemical/toxicity , Chlorophyll/metabolism , Chlorophyll A , Kainic Acid/analogs & derivatives , Marine Toxins , Mediterranean Sea , Nitrates
5.
C R Biol ; 335(6): 406-16, 2012 Jun.
Article in French | MEDLINE | ID: mdl-22721562

ABSTRACT

Some species of the genus Alexandrium are known as potential producers of saxitoxin, a neurotoxin that causes the paralytic shellfish poisoning (PSP) syndrome. Blooming of these species, especially in shellfish farms can affect the aquaculture production and harm human health. Seasonal dynamics of Alexandrium spp. abundance in relationship to environmental factors was investigated from November 2007 to February 2009 at six stations in the Bizerte lagoon, an important shellfish farming area situated in SW Mediterranean. The sampling stations represented different hydrological and trophic conditions: one station TJ (Tinja) is affected by the river plume; two stations (Chaara [Ch] and Canal [Ca]) are influenced by marine inflow (particularly in summer), industrial and urban effluents; and the three other stations (Menzel Abdelrahmen [MA], Menzel Jemil [MJ] and Douaouda [Do]) are located close to shellfish farms. Cell abundance of Alexandrium spp. varied among stations and months. Species of this genus showed a sporadic appearance, but they reached high concentration (0.67-7 × 10(5)cells L(-1)). Maximal cell density was detected in autumn (November 2007; station MA), at salinity of 37.5, temperature of 16 °C and NH(4)(+) level of 55.45 µM. During this month, Alexandrium spp. abundance accounted for a large fraction (61%) of the harmful phytoplankton. The statistical analysis revealed that Alexandrium concentrations were positively correlated with N:P ratio and NH4+ levels. Thus, the eutrophic waters of the lagoon favour the growth of Alexandrium, which seemed to have preference for N-nutrient loading from antrophogenic activities, as ammonium. Blooms of these potential harmful algae may constitute a potential threat in this coastal lagoon of the southern Mediterranean. Consequently, it is necessary to be well vigilant and to do regular monitoring of Alexandrium species.


Subject(s)
Dinoflagellida/physiology , Lakes , Seasons , Aquaculture , Dinoflagellida/growth & development , Dinoflagellida/metabolism , Harmful Algal Bloom , Marine Toxins/metabolism , Nitrogen/analysis , Nitrogen/metabolism , Phosphorus/analysis , Phosphorus/metabolism , Phytoplankton , Salinity , Seawater/chemistry , Shellfish , Silicon/analysis , Silicon/metabolism , Temperature , Tunisia
SELECTION OF CITATIONS
SEARCH DETAIL
...