Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Physiol Biochem ; 60(1): 7-21, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15352380

ABSTRACT

In order to transform cytosolic fructose-1,6-bisphosphatases (FBPase)(EC 3.1.3.11) into potential reductively-modulated chloroplast-type enzymes, we have constructed four chimeric FBPases, which display structural viability as deduced by previous modelling. In the X1-type BV1 and HL1 chimera the N-half of cytosolic sugar beet (Beta vulgaris L.) and human FBPases was fused with the C-half of the pea (Pisum sativum L.) chloroplast enzyme, which carries the cysteine-rich light regulatory sequence. In the X2-type BV2 and HL2 chimera this regulatory fragment was inserted in the corresponding site of the sugar beet cytosolic and human enzymes. Like the plant cytosolic FBPases, the chimeric enzymes show a low rise of activity by dithiothreitol. Both BV1 and BV2, but not HL1 and HL2, display a negligible activation by Trx f, but neither of them by Trx m. Antibodies raised against the pea chloroplast enzyme showed a positive reaction against the four chimeric FBPases and the human enzyme, but not against the sugar beet one. The four chimera display typical kinetics of cytosolic FBPases, with Km values in the 40-140 microM range. We conclude the existence of a structural capacity of cytosolic FBPases for incorporating the redox regulatory cluster of the chloroplast enzyme. However, the ability of these chimeric FBPases for an in vitro redox regulation seems to be scarce, limiting their use from a biotechnology standpoint in in vivo regulation of sugar metabolism.


Subject(s)
Chloroplasts/enzymology , Cytosol/enzymology , Fructose-Bisphosphatase/metabolism , Recombinant Fusion Proteins/metabolism , Amino Acid Sequence , Base Sequence , DNA Primers , Fructose-Bisphosphatase/chemistry , Models, Molecular , Molecular Sequence Data , Oxidation-Reduction , Recombinant Fusion Proteins/chemistry , Sequence Homology, Amino Acid
2.
Biochim Biophys Acta ; 1547(1): 156-66, 2001 May 05.
Article in English | MEDLINE | ID: mdl-11343801

ABSTRACT

It has been proposed that a hydrophobic groove surrounded by positively charged amino acids on thioredoxin (Trx) serves as the recognition and docking site for the interaction of Trx with target proteins. This model for Trx-protein interactions fits well with the Trx-mediated fructose-1,6-bisphosphatase (FBPase) activation, where a protruding negatively charged loop of FBPase would bind to this Trx groove, in a process involving both electrostatic and hydrophobic interactions. This model facilitates the prediction of Trx amino acid residues likely to be involved in enzyme binding. Site-directed mutagenesis of some of these amino acids, in conjunction with measurements of the FBPase activation capacity of the wild type and mutated Trxs, was used to check the model and provided evidence that lysine-70 and arginine-74 of pea Trx m play an essential role in FBPase binding. The binding parameters for the interaction between chloroplast FBPase and the wild type pea Trxs f and m, as well as mutated pea Trx m, determined by equilibrium dialysis in accordance with the Koshland-Nemethy-Filmer model of saturation kinetics, provided additional support for the role of these basic Trx residues in the interaction with FBPase. These data, in conjunction with the midpoint redox potential (E(m)) determinations of Trxs, support the hydrophobic groove model for the interaction between chloroplast FBPase and Trx. This model predicts that differences in the FBPase activation capacity of Trxs arise from their different binding abilities.


Subject(s)
Chloroplasts/enzymology , Fructose-Bisphosphatase/metabolism , Thioredoxins/metabolism , Arginine/chemistry , Binding Sites , Enzyme Activation , Escherichia coli/metabolism , Genetic Vectors , Hydrogen-Ion Concentration , Lysine/chemistry , Models, Theoretical , Mutation , Oxidation-Reduction , Pisum sativum , Potentiometry , Thioredoxins/chemistry , Thioredoxins/genetics
3.
Plant J ; 15(2): 155-63, 1998 Jul.
Article in English | MEDLINE | ID: mdl-9721674

ABSTRACT

Two hybrid thioredoxins (Trx) have been constructed from cDNA clones coding for pea chloroplast Trxs m and f. The splitting point was the Avall site situated between the two cysteines of the regulatory cluster. One hybrid, Trx m/f, was purified from Escherichia coli-expressed cell lysates as a high yielding 12 kDa protein. Western blot analysis showed a positive reaction with antibodies against pea Trxs m and f and, like the parenteral pea Trx m, displayed an acidic pI (5.0) and a high thermal stability. In contrast, the opposite hybrid Trx f/m appeared in E. coli lysates as inclusion bodies, where it was detected by Western blot against pea Trx f antibodies as a 40 kDa protein. Trx f/m was very unstable, sensitive to heat denaturation, and could not be purified. Trx m/f showed a higher affinity for pea chloroplast fructose-1,6-bisphosphatase (FBPase) and a smaller Trx/FBPase saturation ratio than both parenterals; however, the FBPase catalytic rate was lower than that with Trxs m and f. Surprisingly, the hybrid Trx m/f appeared to be incompetent in the activation of pea NADP-malate dehydrogenase. Computer-assisted models of pea Trxs m and f, and of the chimeric Trx m/f, showed a change in the orientation of the alpha 4-helix in the hybrid, which could explain the kinetic modifications with respect to Trxs m and f. We conclude that the stability of Trxs lies on the N-side of the regulatory cluster, and is associated with the acidic character of this fragment and, as a consequence, with the acidic pl of the whole molecule. In contrast, the ability of FBPase binding and enzyme catalysis depends on the structure on the C-side of the regulatory cysteines.


Subject(s)
Chloroplasts/metabolism , Pisum sativum/genetics , Protein Conformation , Thioredoxins/genetics , Amino Acid Sequence , Chloroplast Thioredoxins , Cloning, Molecular , DNA, Complementary , Drug Stability , Escherichia coli , Hot Temperature , Kinetics , Models, Molecular , Molecular Sequence Data , Pisum sativum/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Thermodynamics , Thioredoxins/chemistry , Thioredoxins/metabolism
4.
Plant Physiol ; 114(4): 1169-75, 1997 Aug.
Article in English | MEDLINE | ID: mdl-9276945

ABSTRACT

A cDNA clone encoding pea (Pisum sativum L.) chloroplast thioredoxin (Trx) m and its transit peptide were isolated from a pea cDNA library. Its deduced amino acid sequence showed 70% homology with spinach (Spinacia oleracea L.) Trx m and 25% homology with Trx f from pea and spinach. After subcloning in the Ndel-BamHI sites of pET-12a, the recombinant supplied 20 mg Trx m/L. Escherichia coli culture. This protein had 108 amino acids and was 12,000 D, which is identical to the pea leaf native protein. Unlike pea Trx f, pea Trx m showed a hyperbolic saturation of pea chloroplast fructose-1,6-bisphosphatase (FBPase), with a Trx m/ FBPase molar saturation ratio of about 60, compared with 4 for the Trx f/FBPase quotient. Cross-experiments have shown the ability of pea Trx m to activate the spinach chloroplast FBPase, results that are in contrast with those in spinach found by P. Schürmann, K. Maeda, and A. Tsugita ([1981] Eur J Biochem 116: 37-45), who did not find Trx m efficiency in FBPase activation. This higher efficiency of pea Trx m could be related to the presence of four basic residues (arginine-37, lysine-70, arginine-74, and lysine-97) flanking the regulatory cluster; spinach Trx m lacks the positive charge corresponding to lysine-70 of pea Trx m. This has been confirmed by K70E mutagenesis of pea Trx m, which leads to a 50% decrease in FBPase activation.


Subject(s)
Chloroplasts/enzymology , Fructose-Bisphosphatase/metabolism , Pisum sativum/metabolism , Thioredoxins/metabolism , Amino Acid Sequence , Chloroplast Thioredoxins , DNA, Complementary , Enzyme Activation , Molecular Sequence Data , Pisum sativum/enzymology , Sequence Homology, Amino Acid , Thermodynamics , Thioredoxins/chemistry , Thioredoxins/genetics
5.
J Mol Biol ; 269(4): 623-30, 1997 Jun 20.
Article in English | MEDLINE | ID: mdl-9217265

ABSTRACT

The alignment of the six higher plant photosynthetic fructose-1,6-bisphosphatases (FBPases) so far sequenced shows a lack of homology in the region which just precedes the cluster engaged in light modulation. Earlier experiments suggested that this region is the docking point in FBPase-thioredoxin (Trx) binding, and could be responsible for the interspecific differences in the enzyme-Trx interaction and Trx ability for FBPase activation. Using a pea chloroplast FBPase-coding cDNA, we have prepared two chimeric clones for FBPase. One of them (pDELFBP) shows a deletion of the 17 amino acids (Leu154 to Glu170) coding sequence, whereas in the second (pPFBPW) the above sequence was substituted by the corresponding one of the wheat enzyme. After Escherichia coli overexpression in pET-3d and later purification, both modified FBPases showed FBPase activity when determined under non-reducing conditions. However, only DELFBP lost the Trx f modulatory effect, indicating the important role played by this fragment in FBPase-Trx interaction and activity. Under these conditions the substituted PFBPW enzyme retains FBPase activity, even though clearly diminished. Superose 12 filtration experiments after preincubating the wild-type and modified FBPases with Trx f, showed the existence of an enzyme-Trx f binding with the wild-type and the substituted PFBPW, but not with the deleted DELFBP protein. Similarly, gradient PAGE under native conditions, followed by Western blot and developing with FBPase and Trx f antibodies, indicated the existence of such a binding between the wild-type and PFBPW, on the one hand, and both Trxs f and m, on the other, although never with the deleted DELFBP enzyme. These results show the central role played by the regulatory site preceding fragment of chloroplast FBPase in its binding with Trx. Computer-aided tridimensional models for the wild-type and modified FBPases are proposed.


Subject(s)
Chloroplasts/enzymology , Fructose-Bisphosphatase/metabolism , Thioredoxins/metabolism , Amino Acid Sequence , Binding Sites , Enzyme Activation/radiation effects , Fructose-Bisphosphatase/chemistry , Fructose-Bisphosphatase/genetics , Light , Molecular Sequence Data , Mutagenesis , Pisum sativum/enzymology , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Structure, Tertiary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Triticum/enzymology
6.
J Mol Evol ; 42(4): 422-31, 1996 Apr.
Article in English | MEDLINE | ID: mdl-8642611

ABSTRACT

In contrast to prokaryotes, which typically possess one thioredoxin gene per genome, three different thioredoxin types have been described in higher plants. All are encoded by nuclear genes, but thioredoxins m and f are chloroplastic while thioredoxins h have no transit peptide and are probably cytoplasmic. We have cloned and sequenced Arabidopsis thaliana genomic fragments encoding the five previously described thioredoxins h, as well as a sixth gene encoding a new thioredoxin h. In spite of the high divergence of the sequences, five of them possess two introns at positions identical to the previously sequenced tobacco thioredoxin h gene, while a single one has only the first intron. The recently published sequence of Chlamydomonas thioredoxin h shows three introns, two at the same positions as in higher plants. This strongly suggests a common origin for all cytoplasmic thioredoxins of plants and green algae. In addition, we have cloned and sequenced pea DNA genomic fragments encoding thioredoxins m and f. The thioredoxin m sequence shows only one intron between the regions encoding the transit peptide and the mature protein, supporting the prokaryotic origin of this sequence and suggesting that its association with the transit peptide has been facilitated by exon shuffling. In contrast, the thioredoxin f sequence shows two introns, one at the same position as an intron in various plant and animal thioredoxins and the second at the same position as an intron in thioredoxin domains of disulfide isomerases. This strongly supports the hypothesis of a eukaryotic origin for chloroplastic thioredoxin f.


Subject(s)
Biological Evolution , Introns/genetics , Plants/genetics , Thioredoxins/genetics , Amino Acid Sequence , Arabidopsis/classification , Arabidopsis/genetics , Base Sequence , Chloroplast Thioredoxins , Genetic Markers , Genome, Plant , Isomerases/genetics , Molecular Sequence Data , Pisum sativum/classification , Pisum sativum/genetics , Plants/classification , Protein Disulfide-Isomerases , Sequence Homology, Amino Acid
7.
Plant Mol Biol ; 30(3): 455-65, 1996 Feb.
Article in English | MEDLINE | ID: mdl-8605298

ABSTRACT

When we compare the primary structures of the six chloroplast fructose-1,6-biophosphatases (FBPase) so far sequenced, the existence of a poorly conserved fragment in the region just preceeding the redox regulatory cysteines cluster can be observed. This region is a good candidate for binding of FBPase to its physiological modulator thioredoxin (Td), as this association shows clear differences between species. Using a cDNA clone for pea chloroplast FBPase as template, we have amplified by PCR a DNA insert coding for a 19 amino acid fragment (149Pro-167Gly), which was expressed in pGEMEX-1 as a fusion protein. This protein strongly interacts with pea Td m, as shown by ELISA and Superose 12 gel filtration, depending on pH of the medium. Preliminary assays have shown inhibition of FBPase activity in the presence of specific IgG against the 19 amino acid insert. Surprisingly the fusion protein enhances the FBPase activation in competitive inhibition experiments carried out with FBPase and Td. These results show the fundamental role played by this domain in FBPase-Td binding, not only as docking point for Td, but also by inducing some structural modification in the Td molecule. Taking as model the structural data recently published for spinach photosynthetic FBPase, this sequence from a tertiary and quaternary structural point of view appears available for rearrangement.


Subject(s)
Chloroplasts/enzymology , Fructose-Bisphosphatase/metabolism , Pisum sativum/enzymology , Plant Proteins/metabolism , Thioredoxins/metabolism , Amino Acid Sequence , Animals , Base Sequence , Binding Sites , Escherichia coli , Fructose-Bisphosphatase/genetics , Molecular Sequence Data , Plant Proteins/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
9.
Planta ; 193(4): 494-501, 1994.
Article in English | MEDLINE | ID: mdl-7764999

ABSTRACT

A positive clone against pea (Pisum sativum L.) chloroplast fructose-1,6-bisphosphatase (FBPase; EC 3.1.3.11) antibodies was obtained from a copy DNA (cDNA) library in lambda gt11. The insert was 1261 nucleotides long, and had an open reading frame of 1143 base pairs with coding capability for the whole FBPase subunit and a fragment of a putative processing peptide. An additional 115 base pairs corresponding to a 3'-untranslated region coding for an mRNA poly(A)+ tail were also found in the clone. The deduced sequence for the FBPase subunit was a 357-amino-acid protein of molecular mass 39,253 daltons (Da), showing 82-88% absolute homology with four chloroplastic FBPases sequenced earlier. The 3.1-kilobase (kb) KpnI-SacI fragment of the lambda gt11 derivative was subcloned between the KpnI-SacI restriction sites of pTZ18R to yield plasmid pAMC100. Lysates of Escherichia coli (pAMC100) showed FBPase activity; this was purified as a 170-kDa protein which, upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, displayed a 44-kDa band. As occurs with native FBPases, this indicates a homotetrameric structure for the expressed FBPase. When assayed under excess Mg2+ (10 mM), the expressed enzyme had a higher affinity for the substrate than the native pea leaf FBPase; this parameter appears to be substantiated by a tenfold higher specific activity than that of the native enzyme. However, when activated with dithiothreitol plus saturating concentrations of pea thioredoxin (Td) f, both FBPase had similar activities, with a 4:1 Td f-FBPase stoichiometry. In contrast to the native pea chloroplast FBPase, the E. coli-expressed enzyme did not react with the monoclonal antibody GR-PB5.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Chloroplasts/enzymology , Fabaceae/genetics , Fructose-Bisphosphatase/genetics , Photosynthesis , Plants, Medicinal , Amino Acid Sequence , Base Sequence , Cloning, Molecular , DNA, Complementary , Escherichia coli , Molecular Sequence Data , Recombinant Proteins
10.
Planta ; 182(3): 319-24, 1990 Oct.
Article in English | MEDLINE | ID: mdl-24197181

ABSTRACT

Etiolated pea (Pisum sativum L. cv. Lincoln) seedlings do not show any capability for the biosynthesis of chloroplast fructose-1,6-bisphosphatase (FBPase), but the rate of biosynthesis of the increases with the pre-illumination time. This light-induced FBPase synthesis appears to be regulated at the transcriptional level, the response of young leaves being greater than that of mature ones. In-vivo labelling experiments demonstrated by immunoprecipitation, followed by sodium dodecyl sulfate electrophoresis and fluorography, the presence of a 49-kilodalton (kDa) band which corresponds to the mature FBPase subunit. In-vitro translation experiments with a wheat-germ synthesizing system and polyadenylated mRNA isolated from illuminated young pea seedlings have demonstrated the appearance of a 59-kDa labelled band corresponding to the precursor of the FBPase basic subunit. When intact pea chloroplasts were added to the above in-vitro incubation mixture, a labelled 49-kDa subunit similar to that of the in-vivo experiments appeared in the organelle under illumination. From these results we can conclude that a 10-kDa transit peptide bound to the translated pea FBPase subunit exists in the cytosol; this transit peptide is lost during passage through the chloroplast envelope, leaving the mature subunit inside the organelle.

SELECTION OF CITATIONS
SEARCH DETAIL
...