Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Tech (Berl) ; 65(5): 557-566, 2020 Oct 25.
Article in English | MEDLINE | ID: mdl-32459188

ABSTRACT

Objectives Local wave speed is a biomarker which provides an objective analysis of the cardiovascular function. The aim of this study was to determine the local wave speed in the internal carotid artery by a new non-invasive method that measures blood velocity waveform at only one site. Methods For this purpose, the cepstral analysis was employed to determine the arrival time of the reflection wave and the wave speed in the carotid artery. To validate our model, we applied it experimentally in vivo on young and old healthy subjects. The blood velocity waveform was measured by using phase-contrast magnetic resonance for 22 subjects. Results Our experimental results correlated with reference values reported in previous studies conducted on the internal arterial carotid usually adopting the invasive method. They also correlated with those obtained by using the foot-to-foot method (R2=0.72). The wave speed obtained by the method developed in this study and that of the foot-to-foot method increased with age (p<0.001). Conclusions The method developed in this study can be applied in the other arteries and it can also be used with other techniques such as ultrasound imaging.


Subject(s)
Carotid Arteries/physiopathology , Carotid Artery, Internal/physiology , Blood Pressure/physiology , Carotid Arteries/diagnostic imaging , Elasticity , Humans , Models, Cardiovascular , Ultrasonography
2.
Nonlinear Biomed Phys ; 6(1): 2, 2012 Apr 16.
Article in English | MEDLINE | ID: mdl-22507310

ABSTRACT

BACKGROUND: This study shows that the arterial longitudinal impedance constitutes a hemodynamic parameter of interest for performance characterization of large arteries in normal condition as well as in pathological situations. For this purpose, we solved the Navier-Stokes equations for an incompressible flow using the finite element analysis method and the Arbitrary Lagrangian Eulerian (ALE) formulation. The mathematical model assumes a two-dimensional flow and takes into account the nonlinear terms in the equations of fluid motion that express the convective acceleration, as well as the nonlinear deformation of the arterial wall. Several numerical simulations of the blood flow in large vessels have been performed to study the propagation along an arterial vessel of a pressure gradient pulse and a rate flow pulse. These simulations include various deformations of the wall artery leading to parietal displacements ranging from 0 (rigid wall) to 15% (very elastic wall) in order to consider physiological and pathological cases. RESULTS: The results show significant changes of the rate flow and the pressure gradient wave as a function of aosc, the relative variation in the radius of the artery over a cardiac cycle. These changes are notable beyond a critical value of aosc equal to 0.05. This critical value is also found in the evolution of the longitudinal impedance. So, above a variation of radius of 5%, the convective acceleration, created by the fluid-wall interactions, have an influence on the flow detectable on the longitudinal impedance. CONCLUSIONS: The interpretation of the evolution of the longitudinal impedance shows that it could be a mean to test the performance of large arteries and can contribute to the diagnosis of parietal lesions of large arteries. For a blood vessel with a wall displacement higher than 5% similar to those of large arteries like the aorta, the longitudinal impedance is substantially greater than that obtained in the absence of wall displacement. This study also explains the effects of convective acceleration, on the shape of the decline of the pressure gradient wave and shows that they should not be neglected when the variation in radius is greater than 5%.

SELECTION OF CITATIONS
SEARCH DETAIL
...