Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS J ; 290(12): 3270-3289, 2023 06.
Article in English | MEDLINE | ID: mdl-36757110

ABSTRACT

Inhibition of endoribonuclease/kinase Ire1 has shown beneficial effects in many proteotoxicity-induced pathology models. The mechanism by which this occurs has not been elucidated completely. Using a proteotoxic yeast model of Huntington's disease, we show that the deletion of Ire1 led to lower protein aggregation at longer time points. The rate of protein degradation was higher in ΔIre1 cells. We monitored the two major protein degradation mechanisms in the cell. The increase in expression of Rpn4, coding for the transcription factor controlling proteasome biogenesis, was higher in ΔIre1 cells. The chymotrypsin-like proteasomal activity was also significantly enhanced in these cells at later time points of aggregation. The gene and protein expression levels of the autophagy gene Atg8 were higher in ΔIre1 than in wild-type cells. Significant increase in autophagy flux was also seen in ΔIre1 cells at later time points of aggregation. The results suggest that the deletion of Ire1 activates UPR-independent arms of the proteostasis network, especially under conditions of aggravated stress. Thus, the inhibition of Ire1 may regulate UPR-independent cellular stress-response pathways under prolonged stress.


Subject(s)
Autophagy , Proteotoxic Stress , Autophagy/genetics , Transcription Factors/genetics , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Endoplasmic Reticulum Stress/genetics , Unfolded Protein Response
2.
Brain Res ; 1754: 147261, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33422534

ABSTRACT

Antidepressants are well known to exert their role via upregulation of brain derived neurotrophic factor (BDNF). BDNF has been reported to exerts its neuroprotective effect in rodent and primate models as well as in patients of Alzheimer's disease (AD). The aim of our study was to evaluate the effect of protriptyline (PRT), a tricyclic antidepressant, in streptozotocin (STZ)- induced rat model of AD. Total 10 µl of STZ was injected into each ventricle (1 mg/kg). PRT (10 mg/kg, i.p.) treatment was started 3-day post STZ administration and continued till 21 days. We found that STZ treatment significantly increased pTau, Aß42 and BACE-1 expression, oxidative stress and neurodegeneration in hippocampus and cortex of adult rats. STZ induced impairment in spatial learning and retention memory was associated with increased NFκB and reduced CREB and BDNF expression in cortex and hippocampus. Interestingly, PRT treatment significantly reduced pTau, Aß42 and BACE-1 levels, neurodegeneration, oxidative stress and glial activation, contributing to the improved spatial learning and retention memory in STZ treated rats. Moreover, PRT treatment significantly improved p-ERK/ERK ratio and enhanced BDNF and CREB levels by reducing NFκB and GFAP expression in STZ treated rats. Our data suggest that impaired NFκB and CREB signaling potentially contribute in AD pathogenesis by elevating oxidative stress and neuroinflammation mediated neurodegeneration. Our study has established protriptyline as a multi target molecule in pre-clinical model of AD and further investigations on PRT like molecules could pave way for further development of effective new treatments in neurodegenerative disorders.


Subject(s)
Alzheimer Disease/drug therapy , Oxidative Stress/drug effects , Protriptyline/pharmacology , Spatial Memory/drug effects , Alzheimer Disease/chemically induced , Alzheimer Disease/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Male , Memory Disorders/drug therapy , Memory Disorders/metabolism , Neuroprotective Agents/pharmacology , Rats, Sprague-Dawley , Signal Transduction/drug effects , Streptozocin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...