Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biotechnol ; 353: 51-60, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35691257

ABSTRACT

Adhatoda vasica is used in the treatment of cold, cough, chronic bronchitis, asthma, diarrhea, and dysentery. The biological activities of this species are attributed with the presence of alkaloids, triterpenoids, and flavonoids. Agrobacterium rhizogenes-mediated transformation of A. vasica, produces pyrroloquinazoline alkaloids, was achieved by infecting leaf discs with strain ATCC15834. The bacterial strain infected 82.7% leaf discs and 5-7 hairy root initials were developed from the cut edges of leaf discs. In this study, seven strains of Azotobacter chroococcum and five strains of Pseudomonas putida were used for the biotization of hairy roots. Plant growth-promoting rhizobacteria (PGPR) develops symbiotic association with roots of plants and increases the growth parameters of plants. PGPR (A. chroococcum and P. putida) increased the profiles of nitrogenase and acid phosphatase enzymes, biomass, dry matter contents, anthranilate synthase activity and accumulation of pyrroloquizoline alkaloids in the biotized hairy roots. Both enzymes (nitrogenase and acid phosphatase) maintain sufficient supply of nitrogen and dissolved phosphorus to the cells of hairy roots therefore, the levels of anthranilate synthase activity and pyrroloquinazoline alkaloids are increased. Total seven pyrroloquinazoline alkaloids (vasicine, vasicinone, vasicine acetate, 2-acetyl benzyl amine, vasicinolone, deoxyvasicine and vasicol) were identified from the biotized hairy roots of A. vasica. In our study, biotization increased the profiles of pyrroloquinazoline alkaloids therefore, this strategy may be used in increasing the production of medicinally important secondary metabolites in other plant species also. Our hypothetical model demonstrates that P. putida cell surface receptors receive root exudates by attaching on hairy roots. After attachment, the bacterial strain penetrates in the biotized hairy roots. This endophytic interaction stimulates acid phosphatase activity in the cells of biotized hairy roots. The P. putida plasmid gene (ppp1) expression led to the synthesis of acid phosphatase in cytosol. The enzyme enhances phosphorus availability as well as induces the formation of phosphoribosyl diphosphate. Later, phosphoribosyl diphosphate metabolizes to tryptophan and finally tryptophan converts to anthranilic acid. The synthesized anthranilic acid used in the synthesis of alkaloids in A. vasica.


Subject(s)
Alkaloids , Justicia , Pseudomonas putida , Acid Phosphatase/metabolism , Alkaloids/metabolism , Alkaloids/pharmacology , Anthranilate Synthase/genetics , Anthranilate Synthase/metabolism , Azotobacter , Diphosphates/metabolism , Nitrogenase/metabolism , Phosphorus/metabolism , Plant Roots/metabolism , Pseudomonas putida/genetics , Tryptophan/metabolism
2.
Planta ; 246(6): 1125-1137, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28819874

ABSTRACT

MAIN CONCLUSION: Pyrroloquinazoline alkaloids are medicinally important compounds, determined by HPLC from cell cultures of Adhatoda vasica . The maximum production of vasicinone (12-fold) and vasicine (8.3-fold) was enhanced by stimulating the anthranilate synthase activity via feeding of tryptophan and sorbitol. The decoction of Adhatoda vasica leaves is used for the treatment of throat irritations, inflammations and recommended as expectorant. The plant species contains pyrroloquinazoline alkaloids and has been reported to demonstrate various biological activities. To investigate the effect of elicitors to increase the production of alkaloids, five groups (auxins and cytokinins, biotic elicitors, polysaccharides, amino acids and salts) of elicitors were evaluated. Maximum production of vasicinone (72.74 ± 0.74 mg/g DW; 12-fold) and vasicine (99.44 ± 0.28 mg/g DW; 8.3-fold) was enhanced by feeding of tryptophan and sorbitol at 50 mM concentration in cell cultures. Fourteen free amino acids were estimated from the elicited cells. Sorbitol stimulated up to a maximum accumulation of serine (8.2-fold). The maximal anthranilate synthase (AS) activity (7.5 ± 0.47 pkat/mg protein; 2.9-fold) was induced by salicylic acid and sorbitol. Anthranilate synthase functions as rate-limiting factor for the biosynthesis of pyrroloquinazoline alkaloids. Our results support the widespread use of tryptophan and sorbitol as elicitors to raise the production of vasicinone, vasicine, 2-acetyl benzyl amine and other pyrroloquinazoline alkaloids in cell cultures of A. vasica.


Subject(s)
Alkaloids/metabolism , Anthranilate Synthase/metabolism , Justicia/enzymology , Plant Growth Regulators/pharmacology , Sorbitol/pharmacology , Tryptophan/pharmacology , Acetates/pharmacology , Alkaloids/chemistry , Anthranilate Synthase/drug effects , Anthranilate Synthase/genetics , Anthranilate Synthase/isolation & purification , Cell Culture Techniques , Chromatography, High Pressure Liquid , Cyclopentanes/pharmacology , Cytokinins/pharmacology , Indoleacetic Acids/pharmacology , Justicia/chemistry , Justicia/genetics , Oxylipins/pharmacology , Phosphorus-Oxygen Lyases/drug effects , Phosphorus-Oxygen Lyases/genetics , Phosphorus-Oxygen Lyases/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Medicinal , Polysaccharides/pharmacology , Quinazolines/chemistry , Quinazolines/metabolism , Salicylic Acid/pharmacology
3.
Cytotechnology ; 69(1): 103-115, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27905025

ABSTRACT

The flavonoids are the largest group of phenolic compounds isolated from a wide range of higher plants. These compounds work as antimicrobials, anti-insect agents and protect plants from other types of biotic and abiotic stresses. Various researchers have suggested that flavonoids possessed antioxidant, antineoplastic and cytotoxic activities. The main objective of this study was to test dichloromethane fraction of resinous exudate of Heliotropium subulatum for their antioxidant, antineoplastic and cytotoxic activities, as well as to search new antioxidant and antineoplastic agents for pharmaceutical formulations. Five flavonoids were isolated from resinous exudate of this plant species and screened for their in vitro and in vivo antioxidant models (DPPH radical scavenging, reducing power, superoxide anion scavenging, metal chelating scavenging systems, catalase and lipid peroxidation), antineoplastic (Sarcoma 180), and cytotoxic (Chinese hamster V79 cells) activities. Tricetin demonstrated maximum antioxidant activity against both in vitro and in vivo experimental systems while galangin exhibited maximum inhibition (78.35%) at a dose of 10 µg/kg/day against Sarcoma 180. Similarly, it was found that galangin also showed highest activity (21.1 ± 0.15%) at a concentration of 70 µg/ml to Chinese hamster V79 cells. The observed results suggest that tricetin has a potential to scavenge free radicals in both in vitro and in vivo models while the galangin could be considered as antitumor and cytotoxic agent.

SELECTION OF CITATIONS
SEARCH DETAIL
...