Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Nanotechnol ; 19(6): 766-774, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38388966

ABSTRACT

Incorporating structural coloured materials in flexible and stretchable elastomeric substrates requires numerous steps that compromise their scalability and economic viability for prospective applications in visual sensors and displays. Here we describe a one-step approach for fabricating plasmonic Ga nanostructures embedded in a polydimethylsiloxane substrate exhibiting tunable chromaticity, in response to mechanical stimuli. The process exploits the capillary interactions between uncrosslinked oligomeric chains of the substrate and Ga metal deposited by thermal evaporation, as elucidated by a theoretical model that we developed. By tuning the oligomer content in polydimethylsiloxane, we attain a range of colours covering a substantial gamut in CIE (Commission Internationale de l'Éclairage) coordinates. This mechanochromic flexible substrate shows reversible response to external mechanical stimuli for ~80,000 cycles. We showcase the capabilities of our processing technique by presenting prototypes of reflective displays and sensors for monitoring body parts, smart bandages and the capacity of the nanostructured film to map force in real time.

2.
Nanoscale ; 16(5): 2632-2641, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38227478

ABSTRACT

Plasmonics in metal nanoparticles can enhance their near field optical interaction with matter, promoting emission into selected optical modes. Here, using Ga nanoparticles with carefully tuned plasmonic resonance in proximity to MoSe2 monolayers, we show selective photoluminescence enhancement from the B-exciton and its trion with no observable A-exciton emission. The nanoengineered substrate allows for the first direct experimental observation of the B-trion binding energy in semiconducting monolayers. Using temperature-dependent photoluminescence measurements, we show the following features of the MoSe2 B-exciton family: (i) the trion binding energy has an observable temperature dependence with a decreasing trend towards low temperatures and (ii) the exciton-trion emission ratio varies non-monotonically with temperature with a steep increase in the trion emission at lower temperatures. Using detailed models, we identify the particle size required for selective excitation and describe the underlying physical processes. This opens newer avenues for selectively promoting excitonic species and tuning the effective particle lifetimes in monolayer semiconductors. These results demonstrate the excellent plasmonic properties of Ga nanoparticles, which along with facile processing techniques makes it an attractive alternative to the prevalent noble metal plasmonics having applications in flexible/stretchable materials and textiles.

SELECTION OF CITATIONS
SEARCH DETAIL
...