Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 15(13): 3677-3682, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38535976

ABSTRACT

Lead halide perovskites suffer from water and moisture instability due to the highly ionic nature of the crystal structures, though a few groups took advantage of it for chemical transformation via water-assisted strategy. However, direct exposure of the perovskite to bulk water leads to uncontrolled chemical transformation. Here, we report a controlled chemical transformation of CsPbBr3 to CsPb2Br5 triggered by nanoconfined water by placing CsPbBr3 in the nonpolar phase within a reverse micelle. The chemical transformation reaction is probed by using steady-state and time-resolved optical spectroscopy. We observe absorption and photoluminescence in the UV region stemming clearly from the CsPb2Br5 phase upon interaction with the reverse micellar aqueous solution. Transmission electron microscopy and X-ray diffraction measurements further provided the structure and morphology. Our results direct the formation of CsPbBr3-CsPb2Br5 nanocomposite under dry conditions while the chemically transformed CsPb2Br5 phase exists only in moist conditions, which we explain via the CsBr-stripping mechanism.

2.
Chem Phys Lipids ; 225: 104831, 2019 12.
Article in English | MEDLINE | ID: mdl-31568757

ABSTRACT

Simvastatin belongs to the statin family of cholesterol lowering drugs which act as competitive inhibitors of HMG-CoA reductase, the rate-determining enzyme in cholesterol biosynthesis pathway. Simvastatin is a semi-synthetic, highly lipophilic statin, and has several side effects. Since HMG-CoA reductase is localized in the endoplasmic reticulum, orally administered simvastatin needs to cross the cellular plasma membrane to be able to act on HMG-CoA reductase. With an overall goal of exploring the interaction of simvastatin with membranes, we examined the effect of simvastatin on the organization and dynamics in membranes of varying phase, in a depth-dependent manner. For this, we employed DPH and TMA-DPH, which represent fluorescent membrane probes localized at two different locations (depths) in the membrane. Analysis of fluorescence anisotropy and lifetime data of these depth-specific probes in membranes of varying phase (gel/fluid/liquid-ordered) showed that the maximum membrane disordering was observed in gel phase, while moderate effects were observed in liquid-ordered phase, with no significant change in membrane order in fluid phase membranes. We conclude that simvastatin induces change in membrane order in a depth-dependent and phase-specific manner. These results provide novel insight in the membrane interaction of simvastatin and could be crucial for understanding its pharmacological effect.


Subject(s)
Cell Membrane/drug effects , Lipid Bilayers/metabolism , Simvastatin/pharmacology , Cell Membrane/metabolism , Fluorescence Polarization , Molecular Structure , Simvastatin/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...