Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Artif Cells Nanomed Biotechnol ; 52(1): 238-249, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38696111

ABSTRACT

Malaria is a mosquito-borne infectious disease that is caused by the Plasmodium parasite. Most of the available medication are losing their efficacy. Therefore, it is crucial to create fresh leads to combat malaria. Green silver nanoparticles (AgNPs) have recently attracted a lot of attention in biomedical research. As a result, green mediated AgNPs from leaves of Terminalia bellirica, a medicinal plant with purported antimalarial effects, were used in this investigation. Initially, cysteine-rich proteins from Plasmodium species were studied in silico as potential therapeutic targets. With docking scores between -9.93 and -11.25 kcal/mol, four leaf constituents of Terminalia bellirica were identified. The green mediated silver nanoparticles were afterward produced using leaf extract and were further examined using UV-vis spectrophotometer, DLS, Zeta potential, FTIR, XRD, and FESEM. The size of synthesized TBL-AgNPs was validated by the FESEM results; the average size of TBL-AgNPs was around 44.05 nm. The zeta potential study also supported green mediated AgNPs stability. Additionally, Plasmodium falciparum (3D7) cultures were used to assess the antimalarial efficacy, and green mediated AgNPs could effectively inhibit the parasitized red blood cells (pRBCs). In conclusion, this novel class of AgNPs may be used as a potential therapeutic replacement for the treatment of malaria.


Subject(s)
Antimalarials , Green Chemistry Technology , Metal Nanoparticles , Plant Extracts , Plant Leaves , Plasmodium falciparum , Silver , Terminalia , Silver/chemistry , Silver/pharmacology , Antimalarials/chemistry , Antimalarials/pharmacology , Antimalarials/chemical synthesis , Metal Nanoparticles/chemistry , Terminalia/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Plasmodium falciparum/drug effects , Molecular Docking Simulation , Humans
2.
FEBS Lett ; 598(7): 818-836, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38418371

ABSTRACT

Plasmodium falciparum renovates the host erythrocyte to survive during intraerythrocytic development. This renovation requires many parasite proteins to unfold and move outside the parasitophorous vacuolar membrane, and chaperone-regulated protein folding becomes essential for the exported proteins to function. We report on a type-IV J domain protein (JDP), PF3D7_1401100, which we found to be processed before export and trafficked inside the lumen of parasite-derived structures known as J-dots. We found this protein to have holdase activity, as well as stimulate the ATPase and aggregation suppression activity of the human HSP70 chaperone HsHSPA8; thus, we named it "HSPA8-interacting J protein" (A8iJp). Moreover, we found a subset of HsHSPA8 to co-localize with A8iJp inside the infected human erythrocyte. Our results suggest that A8iJp modulates HsHSPA8 chaperone activity and may play an important role in host erythrocyte renovation.


Subject(s)
HSP40 Heat-Shock Proteins , Plasmodium falciparum , Humans , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/chemistry , HSP40 Heat-Shock Proteins/metabolism , Protein Binding , Protozoan Proteins/metabolism , Molecular Chaperones/metabolism , Erythrocytes , Protein Folding , HSC70 Heat-Shock Proteins/metabolism
3.
Mol Divers ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38127294

ABSTRACT

The continuous emergence of resistance against most frontline antimalarial drugs has led to countless deaths in malaria-endemic countries, counting 619,000 deaths in 2021, with mutation in drug targets being the sole cause. As mutation is correlated frequently with fitness cost, the likelihood of mutation emergence in multiple targets at a time is extremely low. Hence, multitargeting compounds may seem promising to address drug resistance issues with additional benefits like increased efficacy, improved safety profile, and the requirement of fewer pills compared to traditional single and combinational drugs. In this study, we attempted to use the High Throughput Virtual Screening approach to predict multitarget inhibitors against six chemically validated Plasmodium falciparum (Pf) kinases (PfPKG, PfMAP2, PfCDPK4, PfTMK, PfPK5, PfPI4K), resulting in 21 multitargeting hits. The molecular dynamic simulation of the top six complexes (Myricetin-MAP2, Quercetin-CDPK4, Myricetin-TMK, Quercetin-PKG, Salidroside-PK5, and Salidroside-PI4K) showed stable interactions. Moreover, hierarchical clustering reveals the structural divergence of the compounds from the existing antimalarials, indicating less chance of cross-resistance. Additionally, the top three hits were validated through parasite growth inhibition assays, with quercetin and myricetin exhibiting an IC50 value of 1.84 and 3.93 µM, respectively.

4.
J Proteome Res ; 21(10): 2261-2276, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36169658

ABSTRACT

Malaria varies in severity, with complications ranging from uncomplicated to severe malaria. Severe malaria could be attributed to peripheral hyperparasitemia or cerebral malaria. The metabolic interactions between the host and Plasmodium species are yet to be understood during these infections of varied pathology and severity. An untargeted metabolomics approach utilizing the liquid chromatography-mass spectrometry platform has been used to identify the affected host metabolic pathways and associated metabolites in the serum of murine malaria models with uncomplicated malaria, hyperparasitemia, and experimental cerebral malaria. We report that mice with malaria share similar metabolic attributes like higher levels of bile acids, bile pigments, and steroid hormones that have been reported for human malaria infections. Moreover, in severe malaria, upregulated levels of metabolites like phenylalanine, histidine, valine, pipecolate, ornithine, and pantothenate, with decreased levels of arginine and hippurate, were observed. Metabolites of sphingolipid metabolism were upregulated in experimental cerebral malaria. Higher levels of 20-hydroxy-leukotriene B4 and epoxyoctadecamonoenoic acids were found in uncomplicated malaria, with lower levels observed for experimental cerebral malaria. Our study provides insights into host biology during different pathological stages of malaria disease and would be useful for the selection of animal models for evaluating diagnostic and therapeutic interventions against malaria. The raw data files are available via MetaboLights with the identifier MTBLS4387.


Subject(s)
Malaria, Cerebral , Animals , Arginine , Bile Acids and Salts , Bile Pigments , Disease Models, Animal , Hippurates , Histidine , Hormones , Humans , Mice , Ornithine , Phenylalanine , Plasmodium berghei , Sphingolipids , Valine
5.
FEBS Lett ; 596(1): 95-111, 2022 01.
Article in English | MEDLINE | ID: mdl-34890056

ABSTRACT

Renovation of host erythrocytes is vital for pathogenesis by Plasmodium falciparum. These changes are mediated by parasite proteins that translocate beyond the parasitophorous vacuolar membrane in an unfolded state, suggesting protein folding by chaperones is imperative for the functionality of exported proteins. We report a type IV P. falciparum heat-shock protein 40, PF11_0034, that localizes to the cytoplasmic side of J-dots and interacts with the erythrocyte cytoskeleton, and therefore named eCiJp (erythrocyte cytoskeleton-interacting J protein). Recombinant eCiJp binds to the human heat-shock protein 70 HsHSPA1 and promotes its ATPase activity. In addition, eCiJp could suppress protein aggregation. Our data suggest that eCiJp recruits HsHSPA1 to the host erythrocyte cytoskeleton, where it may become involved in remodeling of the erythrocyte cytoskeleton and/or folding of exported parasite proteins.


Subject(s)
HSP40 Heat-Shock Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...