Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Int J Biol Macromol ; 255: 128111, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37979744

ABSTRACT

African swine fever (ASF), caused by the African swine fever virus (ASFV), is now widespread in many countries and severely affects the commercial rearing of swine. Rapid and early diagnosis is crucial for the prevention of ASF. ASFV mature virions comprise the inner envelope protein, p22, making it an excellent candidate for the serological diagnosis and surveillance of ASF. In this study, the prokaryotic-expressed p22 recombinant protein was prepared and purified for immunization in mice. Four monoclonal antibodies (mAbs) were identified using hybridoma cell fusion, clone purification, and immunological assays. The epitopes of mAbs 14G1 and 22D8 were further defined by alanine-scanning mutagenesis. Our results showed that amino acids C39, K40, V41, D42, C45, G48, E49, and C51 directly bound to 14G1, while the key amino acid epitope for 22D8 included K161, Y162, G163, D165, H166, I167, and I168. Homologous and structural analysis revealed that these sites were highly conserved across Asian and European ASFV strains, and the amino acids identified were located on the surface of p22. Thus, our study contributes to a better understanding of the antigenicity of the ASFV p22 protein, and the results could facilitate the prevention and control of ASF.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine , Animals , Mice , African Swine Fever Virus/genetics , African Swine Fever/epidemiology , African Swine Fever/prevention & control , Epitope Mapping , Antibodies, Monoclonal , Antibodies, Viral , Epitopes , Amino Acids
2.
Chem Biol Interact ; 382: 110643, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37481222

ABSTRACT

To investigate the role of the liver kinase (LK) B1 protein, an activator of AMP-activated protein kinase (AMPK), in AMPK signaling suppression when exposed to vesicant, a kind of chemical warfare agent. Cultured human bronchial epithelial cells were inflicted with sulfur mustard (SM) analog, 2-chloroethyl ethyl sulfide (CEES) of 0.2-1.0 mM concentration, and cell proliferation, apoptosis, autophagy, and cellular ATP level were analyzed up to 24 h after the exposure. Focusing on LKB1, heat shock protein (HSP) 90, and cell division cycle (CDC) 37 proteins, the protein expression, phosphorylation, and interaction were examined with western blot, immunofluorescence staining, and/or immunoprecipitation. AMPK signaling was found to be inhibited 24 h after being exposed to either sub-cytotoxic (0.5 mM) or cytotoxic (1.0 mM) concentration of CEES based on MTS assay. Consistently, the degradation of the LKB1 protein and its less interaction with the HSP90/CDC37 complex was confirmed. It was found that 1.0, not 0.5 mM CEES also decreased the CDC37 protein, proteasome activity, and cellular ATP content that modulates HSP90 protein conformation. Inhibiting proteasome activity could alternatively activate autophagy. Finally, either 0.5 or 1.0 mM CEES activated HSP70 and autophagy, and the application of an HSP70 inhibitor blocked autophagy and autophagic degradation of the LKB1 protein. In conclusion, we reported here that AMPK signaling inactivation by CEES was a result of LKB1 protein loss via less protein complex formation and enhanced degradation.


Subject(s)
Mustard Gas , Humans , Mustard Gas/toxicity , AMP-Activated Protein Kinases , Proteasome Endopeptidase Complex , Protein Serine-Threonine Kinases , Molecular Chaperones , HSP90 Heat-Shock Proteins , Epithelial Cells/metabolism , Adenosine Triphosphate , Cell Cycle Proteins/metabolism , Chaperonins/metabolism
3.
Mol Neurobiol ; 60(10): 5915-5930, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37380822

ABSTRACT

MOTS-c is a 16-amino acid mitochondrial-derived peptide reported to be involved in regulating energy metabolism. However, few studies have reported the role of MOTS-c on neuron degeneration. In this study, it was aimed to explore the action of MOTS-c in rotenone-induced dopaminergic neurotoxicity. In an in vitro study, it was observed that rotenone could influence the expression and localization of MOTS-c significantly in PC12 cells, with more MOTS-c translocating into the nucleus from mitochondria. Further study showed that the translocation of MOTS-c from the mitochondria into the nucleus could directly interact with Nrf2 to regulate HO-1 and NQO1 expression in PC12 cells exposed to rotenone, which had been suggested to be involved in the antioxidant defense system. In vivo and in vitro experiments demonstrated that exogenous MOTS-c pretreatment could protect PC12 cells and rats from mitochondrial dysfunction and oxidative stress induced by rotenone. Moreover, MOTS-c pretreatment significantly decreased the loss of TH, PSD95, and SYP protein expression in the striatum of rats exposed to rotenone. In addition, MOTS-c pretreatment could clearly alleviate the downregulated expression of Nrf2, HO-1, and NQO1, as well as the upregulated Keap1 protein expression in the striatum of rotenone-treated rats. Taken together, these findings suggested that MOTS-c could directly interact with Nrf2 to activate the Nrf2/HO-1/NQO1 signal pathway to defend the antioxidant system to prevent dopaminergic neurons from rotenone-induced oxidative stress and neurotoxicity in vitro and in vivo.


Subject(s)
Antioxidants , Rotenone , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Rotenone/toxicity , Rotenone/metabolism , Dopaminergic Neurons/metabolism , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Oxidative Stress , Mitochondria/metabolism
4.
Huan Jing Ke Xue ; 44(4): 2215-2222, 2023 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-37040970

ABSTRACT

With the rapid development of urbanization in China, the number of gas stations in cities is increasing. The composition of oil products in gas stations is complex and diverse, and a series of pollutants will be generated in the process of oil diffusion. Polycyclic aromatic hydrocarbons (PAHs) produced by gas stations can pollute the nearby soil and affect human health. In this study, soil samples (0-20 cm) near 117 gas stations in Beijing were collected, and the contents of seven PAHs were analyzed. Based on the BP neural network model, the contents of PAHs in soil of Beijing gas stations in 2025 and 2030 were predicted. The results showed that the total concentrations of the seven PAHs were 0.01-3.53 mg·kg-1. The concentrations of PAHs were lower than the soil environmental quality risk control standard for soil contamination of development land (Trial) GB 36600-2018. At the same time, the toxic equivalent concentrations (TEQ) of the above seven PAHs were lower than the standard value (1 mg·kg-1) of the World Health Organization (WHO), which they indicate a lower risk to human health. The prediction results showed that the rapid development of urbanization had a positive correlation with the increase in soil PAHs content. By 2030, the content of PAHs in Beijing gas station soil will continue to grow. The predicted concentrations of PAHs in the soil of Beijing gas stations in 2025 and 2030 were 0.085-4.077 mg·kg-1and 0.132-4.412 mg·kg-1, respectively. The contents of seven PAHs were lower than the soil pollution risk screening value of GB 36600-2018; however, the concentration of PAHs increased over time.The contents of PAHs in Chaoyang, Fengtai, and Haidian were relatively higher, which requires further attention.

5.
J Org Chem ; 88(9): 5760-5771, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37027491

ABSTRACT

Azoles and organoselenium compounds are pharmacologically important scaffolds in medicinal chemistry and natural products. We developed an efficient regioselective electrochemical aminoselenation reaction of 1,3-dienes, azoles, and diselenide derivatives to access selenium-containing allylazoles skeletons. This protocol is more economical and environmentally friendly and features a broad substrate scope; pyrazole, triazole, and tetrazolium were all tolerated under the standard conditions, which could be applied to the expedient synthesis of bioactive molecules and in the pharmaceutical industry.

6.
Toxicol Mech Methods ; 33(4): 271-278, 2023 May.
Article in English | MEDLINE | ID: mdl-36106344

ABSTRACT

Using sulfur mustard analog 2-chloroethyl ethyl sulfide (CEES), we established an in vitro model by poisoning cultured immortalized human bronchial epithelial cells. Nile Red staining revealed lipids accumulated 24 h after a toxic dose of CEES (0.9 mM). Lipidomics analysis showed most of the increased lipids were triglycerides (TGs), and the increase in TGs was further confirmed using a Triglyceride-Glo™ Assay kit. Protein and mRNA levels of DGAT1, an important TG biogenesis enzyme, were increased following 0.4 mM CEES exposure. Under higher dose CEES (0.9 mM) exposure, protein and mRNA levels of PPARγ coactivator-1ɑ (PGC-1ɑ), a well-known transcription factor that regulates fatty acid oxidation, were decreased. Finally, application with DGAT1 inhibitor A 922500 or PGC1ɑ agonist ZLN005 was able to block the CEES-induced TGs increase. Overall, our dissection of CEES-induced TGs accumulation provides new insight into energy metabolism dysfunction upon vesicant exposure.HIGHLIGHTSIn CEES (0.9 mM)-injured cells:Triglycerides (TGs) were abundant in the accumulated lipids.Expression of DGAT1, not DGAT2, was increased.Expression of PGC1ɑ, not PGC1ß, was reduced.DGAT1 inhibitor or PGC1ɑ agonist blocked the CEES-mediated increase in TGs.


Subject(s)
Mustard Gas , Humans , Diacylglycerol O-Acyltransferase/genetics , Epithelial Cells/drug effects , Lipids , Mustard Gas/analogs & derivatives , Mustard Gas/toxicity , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , RNA, Messenger , Sulfides
7.
BMJ Surg Interv Health Technol ; 4(1): e000117, 2022.
Article in English | MEDLINE | ID: mdl-35321072

ABSTRACT

Objectives: Precision Robotics' Sirius Robotic Flexible Endoscopic System is a new, fully integrated, compact three-dimensional laparoscopic camera system with a disposable single-use flexible tip that can change its viewing direction. This IDEAL Stage 1 and 2a study assessed its safety, reliability and potential efficacy particularly for single incision laparoscopic surgery and vaginal natural orifice transluminal endoscopic surgery. Design: Prospective single-institution, single-surgeon study. Setting: The study was conducted in a multispecialty hospital. Participants: Women aged 18-70 years scheduled for gynecological laparoscopic surgery were invited to participate. An information sheet and consent was available for the women and an informed consent was obtained. Thirteen participants completed this study. Interventions: The laparoscopic procedures were done in the usual manner. The only difference was the Sirius System was used in place of the conventional laparoscope. All other procedures and instruments remained the same. Main outcome measures: Primary outcome was the proportion of women who successfully completed the intended procedure using the Sirius System without conversion to another camera system, camera users and surgeon's view and experience, and iterations and modifications to the system. Secondary outcomes were the incidence of intraoperative and postoperative complications during the first 6 weeks following surgery, and duration of surgery. Results: 85% (11/13) of women had their procedure completed successfully using the Sirius System. Two women required immediate conversion to the conventional laparoscope due to technical issues. There were no intraoperative complications. Users agreed that the improved field of view was beneficial for laparoscopic surgery. Iterative improvements were made in the imaging quality, user interface and manufacturing quality. Conclusions: Sirius System has early indications for safety and efficacy for intermediate and major minimally invasive laparoscopic procedures in gynecology. Further studies are needed to confirm it can replace a conventional laparoscope in the surgical workflow. Trial registration number: NCT05048407.

8.
Gene ; 822: 146349, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35182677

ABSTRACT

TDCPP is a flame retardant which has nervous and reproductive toxicity. Although there is a close association between nervous and reproductive system, the exact toxic mechanism of TDCPP in these systems is still seldom, especially in a genome scale. In this study, we explored the transcriptomic landscape of TDCPP in PC12 and GC2 cells using RNAseq method. A total of 465 co-differential expressed genes were found. These genes were mainly enriched in extra-cellular matrix, cell adhesion, cell cycle arrest, oxidoreductase activity GO terms, and PI3K/AKT, focal adhesion, ECM-receptor interaction KEGG pathways. Hub genes (ANXA1, COL27A1, GAS6, GNB4 and THBS1) were extracted using STRING and confirmed by qPCR experiment. Vimentin, HSPA5 and Caspase3 were proved to be responsible to TDCPP in GC2 and PC12 cells. Knockdown assay in PC12 cells showed that these hub genes could also affect the protein expression of vimentin, HSPA5 and Caspase3. In summary, TDCPP might exert its toxic effect through disturbing focal adhesion, ECM-receptor interaction and PI3K/Akt pathways. One of the mechanisms could be influence on the cytoskeleton (vimentin), ER stress (HSPA5) and apoptosis (Caspase3). The sequence data in this study might be a useful resource for future TDCPP related researches.


Subject(s)
Flame Retardants/toxicity , Gene Expression Profiling/methods , Gene Regulatory Networks/drug effects , Organophosphorus Compounds/toxicity , Animals , Cell Line , Gene Expression Regulation/drug effects , Male , Mice , Models, Biological , PC12 Cells , RNA-Seq , Rats
9.
Toxicol Lett ; 354: 14-23, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34757179

ABSTRACT

Respiratory system injury is the main cause of mortality for nitrogen mustard (NM)-induced damage. Previous studies indicate that reactive oxygen species (ROS) participates in NM-mediated respiratory injuries, but the detailed mechanism is not quite clear. Human bronchial epithelial cell lines 16HBE and BEAS-2B were treated with HN2, a type of NM. In detail, it was shown that HN2 treatment induced impaired cell viability, excessive mitochondrial ROS production and enhanced cellular apoptosis in bronchial epithelial cells. Moreover, impaired Sirt3/SOD2 axis was observed upon HN2 treatment, with decreased Sirt3 and increased acetylated SOD2 expression levels. Sirt3 overexpression partially ameliorated HN2-induced cell injury. Meanwhile, vitamin D3 treatment partially attenuated HN2-induced apoptosis and improved the mitochondrial functions upon HN2 intervention. In addition, HN2 exposure decreased VDR expression, thus inhibiting the Nrf2 phosphorylation and Sirt3 activation. Inhibition of Nrf2 or Sirt3 could decrease the protective effects of vitamin D3 and enhance mitochondrial ROS production via modulating mitochondrial redox balance. In conclusion, impaired VDR/Nrf2/Sirt3 axis contributed to NM-induced apoptosis, while vitamin D3 supplementation provides protective effects via the activation of VDR and the improvement of mitochondrial functions. This study provides novel mechanism and strategy for NM exposure-induced pulmonary injuries.


Subject(s)
Apoptosis/drug effects , Bronchi/drug effects , Cholecalciferol/pharmacology , Epithelial Cells/drug effects , Nitrogen Mustard Compounds/toxicity , Protective Agents/pharmacology , Respiratory System/drug effects , Cells, Cultured/drug effects , Humans , Respiratory System/physiopathology
10.
Toxicol Res (Camb) ; 10(5): 1034-1044, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34733488

ABSTRACT

Sulfur mustard (a type of vesicant) can directly damage lung bronchial epithelium via aerosol inhalation, and prevalent cell death is an early event that obstructs the respiratory tract. JNK/c-Jun is a stress response pathway, but its role in cell death of the injured cells is not clear. Here, we report that JNK/c-Jun was activated in immortalized human bronchial epithelial (HBE) cells exposed to a lethal dose (20 µM) of nitrogen mustard (NM, a sulfur mustard analog). c-Jun silencing using small-interfering RNA (siRNA) rendered the cells resistant to NM-mediated cell death by blocking poly(ADP-ribose) polymerase 1 (PARP1) cleavage and DNA fragmentation. In addition, the transduction of upstream extrinsic (Fasl-Fas-caspase-8) and intrinsic (loss of Bcl-2 and mitochondrial membrane potential, ΔΨm) apoptosis pathways, as well as phosphorylated (p)-H2AX (Ser139), an epigenetic marker contributing to DNA fragmentation and PARP1 activity, was partially suppressed. To mimic the detachment of cells by NM, HBE cells were trypsinized and seeded on culture plates that were pre-coated with poly-HEMA to prevent cell adhesion. The JNK/c-Jun pathway was found to be activated in the detached cells. In conclusion, our results indicate that JNK/c-Jun pathway activation is necessary for NM-caused HBE cell death and further suggest that c-Jun silencing may be a potential approach to protect HBE cells from vesicant damage.

11.
R Soc Open Sci ; 8(3): 202033, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33959356

ABSTRACT

Automatic video tracking has become a standard tool for investigating the social behaviour of insects. The recent integration of computer vision in tracking technologies will probably lead to fully automated behavioural pattern classification within the next few years. However, many current systems rely on offline data analysis and use computationally expensive techniques to track pre-recorded videos. To address this gap, we developed BACH (Behaviour Analysis maCHine), a software that performs video tracking of insect groups in real time. BACH uses object recognition via convolutional neural networks and identifies individually tagged insects via an existing matrix code recognition algorithm. We compared the tracking performances of BACH and a human observer (HO) across a series of short videos of ants moving in a two-dimensional arena. We found that BACH detected ant shapes only slightly worse than the HO. However, its matrix code-mediated identification of individual ants only attained human-comparable levels when ants moved relatively slowly, and fell when ants walked relatively fast. This happened because BACH had a relatively low efficiency in detecting matrix codes in blurry images of ants walking at high speeds. BACH needs to undergo hardware and software adjustments to overcome its present limits. Nevertheless, our study emphasizes the possibility of, and the need for, further integrating real-time data analysis into the study of animal behaviour. This will accelerate data generation, visualization and sharing, opening possibilities for conducting fully remote collaborative experiments.

12.
Clin Transl Med ; 11(2): e312, 2021 02.
Article in English | MEDLINE | ID: mdl-33634989

ABSTRACT

Nitrogen mustard (NM) causes severe skin injury with an obvious inflammatory response, which is lack of effective and targeted therapies. Vitamin D3 (VD3) has excellent anti-inflammatory properties and is considered as a potential candidate for the treatment of NM-induced dermal toxicity; however, the underlying mechanisms are currently unclear. Cyclooxygenase-2 (COX2; a widely used marker of skin inflammation) plays a key role in NM-induced cutaneous inflammation. Herein, we initially confirmed that NM markedly promoted COX2 expression in vitro and in vivo. NM also increased NOD-like receptor family pyrin domain containing 3 (NLRP3) expression, caspase-1 activity, and interleukin-1ß (IL-1ß) release. Notably, treatment with a caspase-1 inhibitor (zYVAD-fmk), NLRP3 inhibitor (MCC950), and NLRP3 or caspase-1 siRNA attenuated NM-induced NLRP3 inflammasome activation, with subsequent suppression of COX2 expression and IL-1ß release in keratinocytes. Meanwhile, NM increased mitochondrial reactive oxygen species (mtROS) and decreased manganese superoxide dismutase 2 (SOD2) and sirtuin 3 (SIRT3) activities. Mito-TEMPO (a mtROS scavenger) ameliorated NM-caused NLRP3 inflammasome activation in keratinocytes. Moreover, VD3 improved SIRT3 and SOD2 activities, decreased mtROS contents, inactivated the NLRP3 inflammasome, and attenuated cutaneous inflammation induced by NM in vitro and in vivo. The beneficial activity of VD3 against NM-triggered cutaneous inflammation was enhanced by the inhibitors of IL-1, mtROS, NLRP3, caspase-1, and NLRP3 or caspase-1 siRNAs, which was abolished in SIRT3 inhibitor or SIRT3 siRNA-treated keratinocytes and skins from SIRT3-/- mice. In conclusion, VD3 ameliorated NM-induced cutaneous inflammation by inactivating the NLRP3 inflammasome, which was partially mediated through the SIRT3-SOD2-mtROS signaling pathway.


Subject(s)
Dermatitis, Contact/etiology , Inflammasomes/drug effects , Mechlorethamine/toxicity , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Sirtuin 3/metabolism , Superoxide Dismutase/metabolism , Vitamin D/therapeutic use , Animals , Dermatitis, Contact/drug therapy , Female , HaCaT Cells/drug effects , HaCaT Cells/metabolism , Humans , Inflammasomes/physiology , Keratinocytes/drug effects , Keratinocytes/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/drug effects , Mitochondria/metabolism
13.
Signal Transduct Target Ther ; 6(1): 29, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33487631

ABSTRACT

Nitrogen mustard (NM) causes severe vesicating skin injury, which lacks effective targeted therapies. The major limitation is that the specific mechanism of NM-induced skin injury is not well understood. Recently, autophagy has been found to play important roles in physical and chemical exposure-caused cutaneous injuries. However, whether autophagy contributes to NM-induced dermal toxicity is unclear. Herein, we initially confirmed that NM dose-dependently caused cell death and induced autophagy in keratinocytes. Suppression of autophagy by 3-methyladenine, chloroquine, and bafilomycin A1 or ATG5 siRNA attenuated NM-induced keratinocyte cell death. Furthermore, NM increased transient receptor potential vanilloid 1 (TRPV1) expression, intracellular Ca2+ content, and the activities of Ca2+/calmodulin-dependent kinase kinase ß (CaMKKß), AMP-activated protein kinase (AMPK), unc-51-like kinase 1 (ULK1), and mammalian target of rapamycin (mTOR). NM-induced autophagy in keratinocytes was abolished by treatment with inhibitors of TRPV1 (capsazepine), CaMKKß (STO-609), AMPK (compound C), and ULK1 (SBI-0206965) as well as TRPV1, CaMKKß, and AMPK siRNA transfection. In addition, an mTOR inhibitor (rapamycin) had no significant effect on NM-stimulated autophagy or cell death of keratinocytes. Finally, the results of the in vivo experiment in NM-treated skin tissues were consistent with the findings of the in vitro experiment. In conclusion, NM-caused dermal toxicity by overactivating autophagy partially through the activation of TRPV1-Ca2+-CaMKKß-AMPK-ULK1 signaling pathway. These results suggest that blocking TRPV1-dependent autophagy could be a potential treatment strategy for NM-caused cutaneous injury.


Subject(s)
Autophagy-Related Protein 5/genetics , Autophagy/genetics , Skin Diseases/genetics , TRPV Cation Channels/genetics , AMP-Activated Protein Kinase Kinases/genetics , Adenine/analogs & derivatives , Adenine/pharmacology , Animals , Autophagy-Related Protein-1 Homolog/genetics , Blister/genetics , Blister/pathology , Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics , Cell Death/drug effects , Chloroquine/pharmacology , Humans , Keratinocytes/drug effects , Keratinocytes/pathology , Macrolides/pharmacology , Mechlorethamine/toxicity , Mice , RNA, Small Interfering/genetics , Sirolimus/pharmacology , Skin/drug effects , Skin/injuries , Skin/pathology , Skin Diseases/chemically induced , Skin Diseases/drug therapy , Skin Diseases/pathology , TOR Serine-Threonine Kinases/genetics
14.
J Mol Neurosci ; 71(11): 2336-2352, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33515431

ABSTRACT

Mitochondria harbor small circular genomes (mtDNA) that encode 13 oxidative phosphorylation (OXPHOS) proteins, and types of damage to mtDNA may contribute to neuronal damage. Recent studies suggested that regulation of mtDNA repair proteins may be a potential strategy for treating neuronal damage. The mtDNA repair system contains its own repair enzymes and is independent from the nuclear DNA repair system. Endo/exonuclease G-like(EXOG) is a mitochondria-specific 5-exo/endonuclease required for repairing endogenous single-strand breaks (SSBs) in mtDNA. However, whether EXOG plays a key role in neuronal damage induced by rotenone remains unknown. Thus, in this study, we aimed to investigate the effect of EXOG on mtDNA repair and mitochondrial functional maintenance in rotenone-induced neurotoxicity. Our results indicated that rotenone influenced the expression and location of EXOG in PC12 cells. Meanwhile, after rotenone exposure, the expression was reduced for proteins responsible for mtDNA repair, including DNA polymerase γ (POLG), high-temperature requirement protease A2 (HtrA2), and the heat-shock factor 1-single-stranded DNA-binding protein 1 (HSF1-SSBP1) complex. Further analysis demonstrated that EXOG knockdown led to reduced mtDNA copy number and mtDNA transcript level and increased mtDNA deletion, which further aggravated the mtDNA damage and mitochondrial dysfunction under rotenone stress. In turn, EXOG overexpression protected PC12 cells from mtDNA damage and mitochondrial dysfunction induced by rotenone. As a result, EXOG knockdown reduced cell viability and tyrosine hydroxylase expression, while EXOG overexpression alleviated rotenone's effect on cell viability and tyrosine hydroxylase expression in PC12 cells. Further, we observed that EXOG influenced mtDNA repair by regulating protein expression of the HSF1-SSBP1 complex and POLG. Furthermore, our study showed that PGC-1α upregulation with ZLN005 led to increased protein levels of EXOG, POLG, HSF1, and SSBP1, all of which contribute to mtDNA homeostasis. Therefore, PGC-1α may be involved in mtDNA repair through interacting with multiple mtDNA repair proteins, especially with the help of EXOG. In summary, EXOG regulation by PGC-1α plays an essential role in rotenone-induced neurotoxicity in PC12 cells. EXOG represents a protective effect strategy in PC12 cells exposed to rotenone.


Subject(s)
DNA Repair , Endonucleases/metabolism , Mitochondria/metabolism , Rotenone/toxicity , Uncoupling Agents/toxicity , Animals , DNA Damage , DNA Polymerase gamma/metabolism , DNA, Mitochondrial/genetics , DNA-Binding Proteins/metabolism , Mitochondria/drug effects , Mitochondrial Proteins/metabolism , Nerve Tissue Proteins/metabolism , PC12 Cells , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Rats , Serine-Arginine Splicing Factors/metabolism
15.
Health Phys ; 120(1): 105-111, 2021 01.
Article in English | MEDLINE | ID: mdl-32897987

ABSTRACT

Cyclotrons used in nuclear medicine imaging accelerate protons, deuterons, and helium ions to bombard a target, which produces nuclear reactions that generate positron-emitting radionuclides. Secondary neutrons are nonuniformly emitted in these reactions and induce heterogeneous activation of the cyclotron components and concrete vault enclosure. This poses radioactive waste management complications when decommissioning a cyclotron facility, since the objective is to ensure that exposures are within regulatory limits and as low as reasonably achievable (ALARA). The McGovern Medical School in The University of Texas Health Science Center in Houston housed a Scanditronix MC40 cyclotron that produced short-lived radioisotopes for Positron Emission Tomography (PET) imaging from 1984 to 2001 until Tropical Storm Allison rendered it inoperable. The purpose of this study was to provide underrepresented Science, Technology, Engineering and Mathematics (STEM) students an ALARA experience with a practical problem encountered in the radiation safety profession. Gamma dose rate measurements were performed with both a Mirion InSpector 1000 spectrometer and Fluke 451P survey meter in the vault at locations identified as hotspots based on preliminary scoping surveys with the Ludlum model 44-9 detector. However, gamma spectra were measured with the spectrometer exclusively at hotspots along the west wall. Results indicated the maximum gamma dose rate of 129 ± 31 nSv h was about 2 times background near the central beam transport line of the now inoperable cyclotron. Furthermore, gamma emission peaks were identified in the spectra from trace amounts of Co and Eu in the vault's concrete walls.


Subject(s)
Cyclotrons , Nuclear Medicine/education , Radiation Protection , Humans , Occupational Exposure/analysis , Radiation Exposure/analysis , Radiation Monitoring , Radiometry , Schools, Medical , Students , Texas
16.
Toxicol Lett ; 319: 256-263, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31639410

ABSTRACT

Transcription factor activator protein (AP)-1 can be activated in nitrogen-mustard-injured mouse skin, and is thought to participate in the inflammatory response. AP-1 consists of homo- or heterodimers of Fos [c-Fos, Fos-B, fos-related antigen (Fra)-1 and Fra-2] and Jun (c-Jun, JunB and JunD) family members, and information about their expression, location and function are still unclear. In nitrogen-mustard-exposed mouse skin, we found p-ERK activation increased Fra-1 and FosB. Unlike the nucleus location of c-Fos and FosB, Fra-1 and Fra-2 were mainly expressed in the cytoplasm. In nitrogen-mustard-exposed cultured immortalized human keratinocytes (HaCaT cells), Fra-1 in the nucleus functioned as an inhibitor of inflammatory cytokine interleukin (IL)-8. Co-immunoprecipitation showed that Fra-1 formed dimers with IL-8 transcription factors c-Jun, JunB and JunD. Fra-1 depletion increased c-Fos and FosB in the nucleus, accompanied by increased heterodimers of c-Fos/c-Jun, c-Fos/JunB, c-Fos/JunD, and FosB/JunB. In conclusion, Fra-1 trapped in the cytoplasm after nitrogen mustard exposure might be a driving force for IL-8 over-expression in injured skin.


Subject(s)
Chemical Warfare Agents/toxicity , Epidermis/injuries , Epidermis/metabolism , Interleukin-8/biosynthesis , Mechlorethamine/toxicity , Proto-Oncogene Proteins c-fos/metabolism , Animals , Cell Line , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cytoplasm/drug effects , Cytoplasm/metabolism , Humans , Keratinocytes/metabolism , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Hairless , RNA, Small Interfering/pharmacology
17.
Neurotox Res ; 35(2): 331-343, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30242625

ABSTRACT

Parkinson's disease (PD) is a progressive, selective, and age-related neurodegenerative disease. The pathogenic focus of PD is mitochondrial dysfunction. When mitochondrial homeostasis was damaged, it can lead to reactive oxygen species formation to further accelerate the accumulation of dysfunctional mitochondria, resulting in a vicious cycle harmful to the neuron. PINK1 and Parkin, two proteins that are linked to PD, play vital roles in mitophagy, which was very important in maintaining mitochondrial homeostasis. Thus, at present, we explored mitochondrial biogenesis, mitophagy, and fission/fusion in rotenone-induced dopamine neurotoxicity. In particular, we focused on interactions between the PINK1/Parkin pathway and PGC-1α in the regulation of mitochondrial homeostasis impairment. The results indicated that both the autophagy and mitophagy levels increased significantly and were accompanied by altered levels of PINK1/Parkin proteins in rotenone-induced neurotoxicity. PINK1 influenced mitochondrial biogenesis by inhibiting PGC-1α and mtTFA protein expression as well as the mtDNA copy number. PGC-1α, in turn, inhibited PINK1/Parkin protein expression and the mitophagy levels. Furthermore, the results demonstrated that PINK1 influenced mitochondrial fission/fusion by regulating MFN2 and phosphorylating Drp1. In summary, mutual antagonism of the PINK1/Parkin pathway and PGC-1α formed a balance that regulated mitochondrial biogenesis, fission/fusion, and mitophagy. These effects contributed to the maintenance of mitochondrial homeostasis in rotenone-induced neurotoxicity.


Subject(s)
Homeostasis/drug effects , Mitochondria/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/antagonists & inhibitors , Protein Kinases , Rotenone/toxicity , Ubiquitin-Protein Ligases/antagonists & inhibitors , Animals , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Homeostasis/physiology , Mitochondria/physiology , PC12 Cells , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Protein Kinases/metabolism , Rats , Ubiquitin-Protein Ligases/metabolism
18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-771867

ABSTRACT

OBJECTIVE@#To establish the model of antibody-induced immune hemolytic disease in SD rats so as to provide an experimental platform for the exploration of its pathogenesis, course of disease and evaluation of drug efficacy.@*METHODS@#The red blood cells(RBC) of SD rats were isolated and intraperitoneally injected into BALB/c mice to induce production of the antiserum to SD rat RBC. Twenty SD rats were randomly divided into 2 groups. The rats in the model group were injected with 0.1 ml antiserum via tail vein; the rats in the control group were injected with 0.1 ml saline via tail vein.The symptoms of rats, hemolysis-related indexes and histopathological changes of the main organs were observed in both groups after injection.@*RESULTS@#After the injection of antiserum, the SD rats in the model group displayed nasal flaring, laziness, decrease of ingestion and water intake, skin and mucosal jaundice, and gross hemoglobinuria. At the 4th day after the injection, the body weight of SD rats in the model group was significantly lower than that in the control group (P<0.01), and the coefficiens of liver and spleen increased significantly (P<0.01); The levels of WBC, MCV, MCH, DBIL, DBIL/TBIL and FHb all increased statistically significantly, and RBC, Hb, HCT, MCHC and Plt levels decreased significantly in comparison with the control group (P<0.01). In the SD rats of model group, the hemolytic pathological changes were observed in liver, spleen, kidney, lung and small intestine, and erythroid proliferation was observed in bone marrow smears.@*CONCLUSION@#The immune hemolytic disease model of SD rats can be successfully established by injecting the serum aginst SD rat red blood cells into the tail vein of SD rats, showing the high success rate, good reproducibility and low cost.


Subject(s)
Animals , Rats , Hemolysis , Liver , Mice, Inbred BALB C , Rats, Sprague-Dawley , Reproducibility of Results
19.
J Phys Condens Matter ; 30(14): 145302, 2018 Apr 11.
Article in English | MEDLINE | ID: mdl-29460849

ABSTRACT

We theoretically investigate Goos-Hänchen (GH) displacement by modelling the spin transport in an archetypal device structure-a magnetically confined GaAs/Al x Ga1-x As nanostructure modulated by spin-orbit coupling (SOC). Both Rashba and Dresselhaus SOCs are taken into account. The degree of spin-polarized GH displacement can be tuned by Rashba or Dresselhaus SOC, i.e. interfacial confining electric field or strain engineering. Based on such a semiconductor nanostructure, a controllable spatial spin splitter can be proposed for spintronics applications.

20.
Biochim Biophys Acta Mol Basis Dis ; 1864(4 Pt A): 1086-1103, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29353068

ABSTRACT

Parkinson's disease (PD) is the second most common age-related neurodegenerative disease. Mitochondrial dysfunction has been the focus of the pathogenesis of PD. The mitochondrial ATP-sensitive potassium channel (mitoKATP) plays a significant role in mitochondrial physiology and has been extensively shown to protect against ischemic and brain reperfusion injury. However, there have long been controversies regarding its role in Parkinson's disease. We investigated the role of mitoKATP channels in rotenone-induced PD model in vivo and vitro and the interactions of mitoKATP channels, mitochondrial dynamics and PD. The results indicated that the use of diazoxide to activate mitoKATP channels resulted in the aggravation of rotenone-induced dopamine neurodegeneration in PC12 cells and SD rats. In contrast, the use of 5-hydroxydecanoate (5-HD) to inhibit mitoKATP channels improved rotenone-induced dopamine neurodegeneration, which was not consistent with mitoKATP channels in ischemic and brain reperfusion injury. Further analysis determined that the mitoKATP channel was involved in PD mainly via the regulation of mitochondrial biogenesis and fission/fusion. And the pore subunits of Kir6.1, the major component of mitoKATP channels, was the key contributor in its interaction with mitochondrial dynamics in rotenone-induced dopamine neurodegeneration. Therefore, it can be concluded that mitoKATP channels regulate mitochondrial dynamics to participate in rotenone-induced PD mainly attributes to the pore subunits of Kir6.1. And additionally, though mitoKATP channels may represent a direction of one potential target for neuroprotection, it should be noted that the effects are different in the activation or inhibition of mitoKATP channels in different models.


Subject(s)
KATP Channels/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics , Mitochondrial Proteins/metabolism , Parkinson Disease, Secondary/metabolism , Animals , Male , Mitochondria/pathology , PC12 Cells , Parkinson Disease, Secondary/pathology , Rats , Rats, Sprague-Dawley , Rotenone/adverse effects , Rotenone/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...