Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Front Pharmacol ; 15: 1392209, 2024.
Article in English | MEDLINE | ID: mdl-38948472

ABSTRACT

Amdizalisib, also named HMPL-689, a novel selective and potent PI3Kδ inhibitor, is currently under Phase II clinical development in China for treating hematological malignancies. The preclinical pharmacokinetics (PK) of amdizalisib were extensively characterized in vitro and in vivo to support the further development of amdizalisib. We characterized the plasma protein binding, blood-to-plasma partition ratio, cell permeability, hepatic microsomal metabolic stability, and drug-drug interaction potential of amdizalisib using in vitro experiments. In vivo PK assessment was undertaken in mice, rats, dogs, and monkeys following a single intravenous or oral administration of amdizalisib. The tissue distribution and excretion of amdizalisib were evaluated in rats. The PK parameters (CL and Vss) of amdizalisib in preclinical species (mice, rats, dogs, and monkeys) were utilized for the human PK projection using the allometric scaling (AS) approach. Amdizalisib was well absorbed and showed low-to-moderate clearance in mice, rats, dogs, and monkeys. It had high cell permeability without P-glycoprotein (P-gp) or breast cancer resistance protein (BCRP) substrate liability. Plasma protein binding of amdizalisib was high (approximately 90%). It was extensively distributed but with a low brain-to-plasma exposure ratio in rats. Amdizalisib was extensively metabolized in vivo, and the recovery rate of the prototype drug was low in the excreta. Amdizalisib and/or its metabolites were primarily excreted via the bile and urine in rats. Amdizalisib showed inhibition potential on P-gp but not on BCRP and was observed to inhibit CYP2C8 and CYP2C9 with IC50 values of 30.4 and 10.7 µM, respectively. It exhibited induction potential on CYP1A2, CYP2B6, CYP3A4, and CYP2C9. The preclinical data from these ADME studies demonstrate a favorable pharmacokinetic profile for amdizalisib, which is expected to support the future clinical development of amdizalisib as a promising anti-cancer agent.

2.
Biomed Pharmacother ; 176: 116936, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38878685

ABSTRACT

Myocardial reperfusion injury occurs when blood flow is restored after ischemia, an essential process to salvage ischemic tissue. However, this phenomenon is intricate, characterized by various harmful effects. Tissue damage in ischemia-reperfusion injury arises from various factors, including the production of reactive oxygen species, the sequestration of proinflammatory immune cells in ischemic tissues, the induction of endoplasmic reticulum stress, and the occurrence of postischemic capillary no-reflow. Secretory phospholipase A2 (sPLA2) plays a crucial role in the eicosanoid pathway by releasing free arachidonic acid from membrane phospholipids' sn-2 position. This liberated arachidonic acid serves as a substrate for various eicosanoid biosynthetic enzymes, including cyclooxygenases, lipoxygenases, and cytochromes P450, ultimately resulting in inflammation and an elevated risk of reperfusion injury. Therefore, the activation of sPLA2 directly correlates with the heightened and accelerated damage observed in myocardial ischemia-reperfusion injury (MIRI). Presently, clinical trials are in progress for medications aimed at sPLA2, presenting promising avenues for intervention. Cardiolipin (CL) plays a crucial role in maintaining mitochondrial function, and its alteration is closely linked to mitochondrial dysfunction observed in MIRI. This paper provides a critical analysis of CL modifications concerning mitochondrial dysfunction in MIRI, along with its associated molecular mechanisms. Additionally, it delves into various pharmacological approaches to prevent or alleviate MIRI, whether by directly targeting mitochondrial CL or through indirect means.


Subject(s)
Cardiolipins , Myocardial Reperfusion Injury , Humans , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/pathology , Animals , Cardiolipins/metabolism , Phospholipases A2, Secretory/metabolism
3.
Bioorg Med Chem ; 107: 117762, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38759254

ABSTRACT

Honokiol, derived from Magnolia officinalis (a traditional Chinese medicine), has been reported to have anticancer activity. Here, a series of novel honokiol thioethers bearing a 1,3,4-oxadiazole moiety were prepared and evaluated for their anticancer activities against three types of digestive system tumor cells. Biological evaluation showed that honokiol derivative 3k exhibited the best antiproliferative activity against HCT116 cells with an IC50 value of 6.1 µmol/L, superior to the reference drug 5-fluorouracil (IC50: 9.63 ± 0.27 µmol/L). The structure-activity relationships (SARs) indicated that the introduction of -(4-NO2)Ph, 3-pyridyl, -(2-F)Ph, -(4-F)Ph, -(3-F)Ph, -(4-Cl)Ph, and -(3-Cl)Ph groups was favorable for enhancing the anticancer activity of the title honokiol thioethers. Further study revealed that honokiol thioether 3k can well inhibit the proliferation of colon cancer cells HCT116, arresting the cells in G1 phase and inducing cell death. Moreover, a preliminary mechanism study indicated that 3k directly inhibits the transcription and expression of YAP protein without activating the Hippo signaling pathway. Thus, honokiol thioether 3k could be deeply developed for the development of honokiol-based anticancer candidates.


Subject(s)
Biphenyl Compounds , Cell Proliferation , Drug Screening Assays, Antitumor , Lignans , YAP-Signaling Proteins , Humans , Lignans/pharmacology , Lignans/chemistry , Lignans/chemical synthesis , Biphenyl Compounds/pharmacology , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/chemistry , Structure-Activity Relationship , Cell Proliferation/drug effects , HCT116 Cells , YAP-Signaling Proteins/metabolism , Molecular Structure , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Sulfides/chemistry , Sulfides/pharmacology , Sulfides/chemical synthesis , Transcription Factors/metabolism , Transcription Factors/antagonists & inhibitors , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/chemical synthesis , Dose-Response Relationship, Drug , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Allyl Compounds , Phenols
4.
Eur J Med Chem ; 267: 116166, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38281455

ABSTRACT

Following nearly two decades of development, significant advancements have been achieved in PROTAC technology. As of the end of 2022, more than 20 drugs have entered clinical trials, with ARV-471 targeting estrogen receptor (ER) showing remarkable progress by entering phase III clinical studies. In 2022, significant progress has been made on multiple targets. The first reversible covalent degrader designed to target the KRASG12C mutant protein, based on cyclopropionamide, has been reported. Additionally, the activity HDCA1 degrader surpassed submicromolar levels during the same year. A novel FEM1B covalent ligand called EN106 was also discovered, expanding the range of available ligands. Furthermore, the first PROTAC drug targeting SOS1 was reported. Additionally, the first-in-class degraders that specifically target BRD4 isoforms (BRD4 L and BRD4 S) have recently been reported, providing a valuable tool for further investigating the biological functions of these isoforms. Lastly, a breakthrough was also achieved with the first degrader targeting both CDK9 and Cyclin T1. In this review, we aimed to update the PROTAC degraders as potential anticancer agents covering articles published in 2022. The design strategies, degradation effects, and anticancer activities were highlighted, which might provide an updated sight to develop novel PROTAC degraders with great potential as anticancer agents as well as favorable drug-like properties.


Subject(s)
Antineoplastic Agents , Nuclear Proteins , Transcription Factors , Antineoplastic Agents/pharmacology , Estrogen Antagonists , Protein Isoforms , Proteolysis
5.
Eur J Med Chem ; 265: 116118, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38181651

ABSTRACT

In this work, we utilized the molecular hybridization strategy to design and synthesize novel 1,2,3-triazole benzothiazole derivatives K1-26. The antiproliferative activities against MGC-803, Kyse30 and HCT-116 cells were explored, and their structure-activity relationship were preliminarily conducted and summarized. Among them, compound K18, exhibited the strongest proliferation inhibitory activity, with esophageal cancer cells Kyse30 and EC-109 being the most sensitive to its effects (IC50 values were 0.042 and 0.038 µM, respectively). Compound K18 effectively inhibited tubulin polymerization (IC50 = 0.446 µM), thereby hindering tubulin polymerize into filamentous microtubules in Kyse30 and EC-109 cells. Additionally, compound K18 induced the degradation of oncogenic protein YAP via the UPS pathway. Based on these dual molecular-level effects, compound K18 could induce G2/M phase arrest and cell apoptosis in Kyse30 and EC-109 cells, as well as regulate the expression levels of cell cycle and apoptosis-related proteins. In summary, our findings highlight a novel 1,2,3-triazole benzothiazole derivative K18, which possesses significant potential for treating esophageal cancers.


Subject(s)
Antineoplastic Agents , Esophageal Neoplasms , Melphalan , gamma-Globulins , Humans , Tubulin Modulators , Tubulin/metabolism , Cell Line, Tumor , Drug Screening Assays, Antitumor , Cell Proliferation , Structure-Activity Relationship , Benzothiazoles/pharmacology , Triazoles/pharmacology , Esophageal Neoplasms/drug therapy , Polymerization , Molecular Structure
6.
Circulation ; 149(9): 684-706, 2024 02 27.
Article in English | MEDLINE | ID: mdl-37994595

ABSTRACT

BACKGROUND: The majority of people with diabetes are susceptible to cardiac dysfunction and heart failure, and conventional drug therapy cannot correct diabetic cardiomyopathy progression. Herein, we assessed the potential role and therapeutic value of USP28 (ubiquitin-specific protease 28) on the metabolic vulnerability of diabetic cardiomyopathy. METHODS: The type 2 diabetes mouse model was established using db/db leptin receptor-deficient mice and high-fat diet/streptozotocin-induced mice. Cardiac-specific knockout of USP28 in the db/db background mice was generated by crossbreeding db/m and Myh6-Cre+/USP28fl/fl mice. Recombinant adeno-associated virus serotype 9 carrying USP28 under cardiac troponin T promoter was injected into db/db mice. High glucose plus palmitic acid-incubated neonatal rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes were used to imitate diabetic cardiomyopathy in vitro. The molecular mechanism was explored through RNA sequencing, immunoprecipitation and mass spectrometry analysis, protein pull-down, chromatin immunoprecipitation sequencing, and chromatin immunoprecipitation assay. RESULTS: Microarray profiling of the UPS (ubiquitin-proteasome system) on the basis of db/db mouse hearts and diabetic patients' hearts demonstrated that the diabetic ventricle presented a significant reduction in USP28 expression. Diabetic Myh6-Cre+/USP28fl/fl mice exhibited more severe progressive cardiac dysfunction, lipid accumulation, and mitochondrial disarrangement, compared with their controls. On the other hand, USP28 overexpression improved systolic and diastolic dysfunction and ameliorated cardiac hypertrophy and fibrosis in the diabetic heart. Adeno-associated virus serotype 9-USP28 diabetic mice also exhibited less lipid storage, reduced reactive oxygen species formation, and mitochondrial impairment in heart tissues than adeno-associated virus serotype 9-null diabetic mice. As a result, USP28 overexpression attenuated cardiac remodeling and dysfunction, lipid accumulation, and mitochondrial impairment in high-fat diet/streptozotocin-induced type 2 diabetes mice. These results were also confirmed in neonatal rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes. RNA sequencing, immunoprecipitation and mass spectrometry analysis, chromatin immunoprecipitation assays, chromatin immunoprecipitation sequencing, and protein pull-down assay mechanistically revealed that USP28 directly interacted with PPARα (peroxisome proliferator-activated receptor α), deubiquitinating and stabilizing PPARα (Lys152) to promote Mfn2 (mitofusin 2) transcription, thereby impeding mitochondrial morphofunctional defects. However, such cardioprotective benefits of USP28 were largely abrogated in db/db mice with PPARα deletion and conditional loss-of-function of Mfn2. CONCLUSIONS: Our findings provide a USP28-modulated mitochondria homeostasis mechanism that involves the PPARα-Mfn2 axis in diabetic hearts, suggesting that USP28 activation or adeno-associated virus therapy targeting USP28 represents a potential therapeutic strategy for diabetic cardiomyopathy.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Induced Pluripotent Stem Cells , Ubiquitin Thiolesterase , Animals , Humans , Mice , Rats , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetic Cardiomyopathies/metabolism , Induced Pluripotent Stem Cells/metabolism , Lipids , Mice, Knockout , Myocytes, Cardiac/metabolism , PPAR alpha/metabolism , Streptozocin/metabolism , Streptozocin/therapeutic use , Ubiquitin Thiolesterase/analysis , Ubiquitin Thiolesterase/metabolism
7.
J Pharmacol Exp Ther ; 388(1): 156-170, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37918855

ABSTRACT

Spleen tyrosine kinase (Syk) is an intracellular tyrosine kinase involved in the signal transduction in immune cells mainly. Its aberrant regulation is associated with diversified allergic disorders, autoimmune diseases and B cell malignancies. Therefore, inhibition of Syk is considered a reasonable approach to treat autoimmune/inflammatory diseases and B cell malignancies. Here we described the preclinical characterization of sovleplenib, a novel, highly potent and selective, oral Syk inhibitor, in several rodent autoimmune disease models. Sovleplenib potently inhibited Syk activity in a recombinant enzymatic assay and Syk-dependent cellular functions in various immune cell lines and human whole blood in vitro. Furthermore, sovleplenib, by oral administration, demonstrated strong in vivo efficacies in murine models of immune thrombocytopenia (ITP), autoimmune hemolytic anemia (AIHA), and chronic graft-versus-host disease (cGVHD), and a rat model of collagen induced arthritis (CIA) respectively, in a dose-dependent manner. Collectively, these results clearly supported sovleplenib as a therapeutic agent in the treatment of autoimmune diseases. Sovleplenib is being globally developed for ITP (Phase III, NCT05029635, Phase Ib/II, NCT03951623), wAIHA (Phase II/III, NCT05535933) and B-cell lymphoma (Phase I, NCT02857998, NCT03779113). SIGNIFICANCE STATEMENT: Syk is a key mediator of signaling pathways downstream of a wide array of receptors important for immune functions, including the B cell receptor, immunoglobulin receptors bearing Fc receptors. Inhibition of Syk could provide a novel therapeutic approach for autoimmune diseases and hematologic malignancies. The manuscript describes the preclinical pharmacology characterization of sovleplenib, a novel Syk inhibitor, in enzymatic and cellular assays in vitro and several murine autoimmune disease models in vivo.


Subject(s)
Autoimmune Diseases , Neoplasms , Rats , Mice , Humans , Animals , Protein-Tyrosine Kinases , Syk Kinase , Signal Transduction , Protein Kinase Inhibitors/pharmacology , Autoimmune Diseases/drug therapy , Neoplasms/drug therapy
8.
Eur J Med Chem ; 265: 116079, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38150962

ABSTRACT

In this work, a series of novel coumarin-based derivatives were designed and synthesized as tubulin polymerization inhibitors targeting the colchicine binding site, and their antiproliferative activities against MGC-803, HCT-116 and KYSE30 cells were evaluated. Among them, the compound I-3 (MY-1442) bearing a 6-methoxy-1,2,3,4-tetrahydroquinoline group exhibited most potent inhibitory activities on MGC-803 (IC50 = 0.034 µM), HCT-116 (IC50 = 0.081 µM) and KYSE30 cells (IC50 = 0.19 µM). Further mechanism studies demonstrated that compound I-3 (MY-1442) could directly bind to the colchicine binding site of ß-tubulin to inhibit tubulin polymerization and microtubules at the cellular level. The results of molecular docking indicated there were well binding interactions between compound I-3 (MY-1442) and the colchicine binding site of ß-tubulin. Compound I-3 (MY-1442) also exhibited effective anti-proliferation, pro-apoptosis, and anti-migration abilities against gastric cancer cells MGC-803. Additionally, compound I-3 (MY-1442) could regulate the expression of cell cycle- and apoptosis-related proteins. Importantly, compound I-3 (MY-1442) could significantly inhibit tumor growth in the MGC-803 xenograft tumor model with a TGI rate of 65.5 % at 30 mg/kg/day. Taken together, this work suggested that the coumarin skeleton exhibited great potential to be a key pharmacophore of tubulin polymerization inhibitors for the discovery of anticancer agents.


Subject(s)
Antineoplastic Agents , Stomach Neoplasms , Humans , Colchicine/pharmacology , Tubulin/metabolism , Tubulin Modulators/chemistry , Molecular Docking Simulation , Stomach Neoplasms/drug therapy , Polymerization , Cell Proliferation , Binding Sites , Coumarins/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor
9.
Bioorg Chem ; 141: 106895, 2023 12.
Article in English | MEDLINE | ID: mdl-37797456

ABSTRACT

In this study, twenty-one novel 2,4-diaminopyrimidine cinnamyl derivatives as inhibitors targeting FAK were designed and synthesized based on the structure of TAE-226, and the inhibitory effects of these compounds on both the FAK enzyme and three cancer cell lines (MGC-803, HCT-116, and KYSE30) were investigated. Among them, compound 12s displayed potent inhibitory potency on FAK (IC50 = 47 nM), and demonstrated more significant antiproliferative activities in MGC-803, HCT-116 and KYSE30 cells (IC50 values were 0.24, 0.45 and 0.44 µM, respectively) compared to TAE-226. Furthermore, compound 12s significantly inhibited FAK activation leading to the negative regulation of FAK-related signaling pathways such as AKT/mTOR and MAPK signaling pathways. Molecular docking study suggested that compound 12s could well occupy the ATP-binding pocket site of FAK similar to TAE-226. In addition, compound 12s also efficiently inhibited the proliferation, induced apoptosis and cellular senescence in MGC-803 cells. In conclusion, compound 12s emerges a potent FAK inhibitor that could exert potent inhibitory activity against gastric cancer cells.


Subject(s)
Antineoplastic Agents , Stomach Neoplasms , Humans , Structure-Activity Relationship , Antineoplastic Agents/chemistry , Molecular Docking Simulation , Stomach Neoplasms/drug therapy , Cell Proliferation , Drug Screening Assays, Antitumor , Molecular Structure , Cell Line, Tumor , Protein Kinase Inhibitors
10.
Eur J Med Chem ; 259: 115673, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37487305

ABSTRACT

Histone deacetylases, as a new class of anticancer targets, could maintain homeostasis by catalyzing histone deacetylation and play important roles in regulating the expression of target genes. Due to the fact that simultaneous intervention with dual tumor related targets could improve treatment effects, researches on innovative design of dual-target drugs are underway. HDAC is known as a "sensitizer" for the synergistic effects with other anticancer-target drugs because of its flexible structure design. The synergistic effects of HDAC inhibitor and other target inhibitors usually show enhanced inhibitory effects on tumor cells, and also provide new strategies to overcome multidrug resistance. Many research groups have reported that simultaneously inhibiting HDAC and other targets, such as tubulin, EGFR, could enhance the therapeutic effects. The o-aminobenzamide group is often used as a ZBG group in the design of HDAC inhibitors with potent antitumor effects. Given the prolonged inhibitory effects and reduced toxic side effects of HDAC inhibitors using o-aminobenzamide as the ZBG group, the o-aminobenzamide group is expected to become a more promising alternative to hydroxamic acid. In fact, o-aminobenzamide-based dual inhibitors of HDAC with different chemical structures have been extensively prepared and reported with synergistic and enhanced anti-tumor effects. In this work, we first time reviewed the rational design, molecular docking, inhibitory activities and potential application of o-aminobenzamide-based HDAC inhibitors with dual targeting capabilities in cancer therapy, which might provide a reference for developing new and more effective anticancer drugs.


Subject(s)
Antineoplastic Agents , Neoplasms , Histone Deacetylase Inhibitors/chemistry , Molecular Docking Simulation , Cell Line, Tumor , Antineoplastic Agents/chemistry , Tubulin , Cell Proliferation , Neoplasms/drug therapy
11.
J Enzyme Inhib Med Chem ; 38(1): 2237701, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37489043

ABSTRACT

In this work, a series of novel arylamide derivatives containing piperazine moiety were designed and synthesised as tubulin polymerisation inhibitors. Among 25 target compounds, compound 16f (MY-1121) exhibited low nanomolar IC50 values ranging from 0.089 to 0.238 µM against nine human cancer cells. Its inhibitory effects on liver cancer cells were particularly evident with IC50 values of 89.42 and 91.62 nM for SMMC-7721 and HuH-7 cells, respectively. Further mechanism studies demonstrated that compound 16f (MY-1121) could bind to the colchicine binding site of ß-tubulin and directly act on ß-tubulin, thus inhibiting tubulin polymerisation. Additionally, compound 16f (MY-1121) could inhibit colony forming ability, cause morphological changes, block cell cycle arrest at the G2 phase, induce cell apoptosis, and regulate the expression of cell cycle and cell apoptosis related proteins in liver cancer cells. Overall, the promising bioactivities of compound 16f (MY-1121) make the novel arylamide derivatives have the value for further development as tubulin polymerisation inhibitors with potent anticancer activities.


Subject(s)
Liver Neoplasms , Tubulin , Humans , Apoptosis , Binding Sites , Piperazine , Tubulin Modulators
12.
Bioorg Chem ; 139: 106684, 2023 10.
Article in English | MEDLINE | ID: mdl-37356337

ABSTRACT

The microtubule system plays an important role in the mitosis and growth of eukaryotic cells, and it is considered as an appealing and highly successful molecular target for cancer treatment. In fact, microtubule targeting agents, such as paclitaxel and vinblastine, have been approved by FDA for tumor therapy, which have achieved significant therapeutic effects and sales performance. At present, microtubule targeting agents mainly include microtubule-destabilizing agents, microtubule-stabilizing agents, and a few tubulin degradation agents. Although there are few reports about tubulin degradation agents at present, tubulin degradation agents show great potential in overcoming multidrug resistance and reducing neurotoxicity. In addition, some natural drugs could specifically degrade tubulin in tumor cells, but have no effect in normal cells, thus showing a good biosafety profile. Therefore, tubulin degradation agents might exhibit a better application. Currently, some small molecules have been designed to promote tubulin degradation with potent antiproliferative activities, showing the potential for cancer treatment. In this work, we reviewed the reports on tubulin degradation, and focused on the degradation mechanism and important functional groups of chemically synthesized compounds, hoping to provide help for the degradation design of tubulin.


Subject(s)
Antineoplastic Agents , Tubulin , Tubulin/metabolism , Microtubules , Antineoplastic Agents/chemistry , Vinblastine/metabolism , Vinblastine/pharmacology , Paclitaxel/metabolism , Tubulin Modulators/chemistry
13.
Bioorg Chem ; 137: 106580, 2023 08.
Article in English | MEDLINE | ID: mdl-37149948

ABSTRACT

As a class of microtubule targeting agents, colchicine binding site inhibitors (CBSIs) are considered as promising drug candidates for cancer therapy. However, due to adverse reactions, there are currently no CBSIs approved by FDA for cancer treatment. Therefore, extensive efforts are still encouraged to find novel CBSIs with different chemical structures and better anticancer efficacies. In this work, we designed and synthesized a new coumarin-dihydroquinoxalone derivative, MY-673, and evaluated its anticancer potency in vitro and in vivo. We confirmed that MY-673 was a potent CBSI that it not only inhibited tubulin polymerization, but also exhibited significant inhibitory potency on the growth of 13 cancer cells with IC50 values from 11.7 nM to 395.9 nM. Based on the results of kinase panel screening, MY-673 could inhibit ERK (extracellular regulated protein kinases) pathways-related kinases. We further confirmed that MY-673 could inhibit ERK signaling pathway in MGC-803 and HGC-27 cells, and then affected the expression level of SMAD4 protein in TGF-ß (transforming growth factor ß) /SMAD (small mother against decapentaplegic) signaling pathway using the western blotting assay. In addition, compound MY-673 could effectively inhibit cell proliferation, migration and induce cell apoptosis. We also further confirmed the in vivo efficacy of MY-673 in inhibiting tumor growth using the MGC-803 xenograft tumor model. At 20 mg/kg, the TGI rate was 85.9%, and it did not cause obvious toxicity to the main organs of mice. Together, the results we report here indicated that MY-673 was a promising CBSI for cancer treatment, which was capable of inhibiting the ERK pathway with potent antiproliferative activities in vitro and in vivo.


Subject(s)
Antineoplastic Agents , Stomach Neoplasms , Humans , Animals , Mice , Tubulin Modulators/pharmacology , Tubulin Modulators/therapeutic use , Tubulin Modulators/chemistry , MAP Kinase Signaling System , Tubulin/metabolism , Microtubules , Colchicine/metabolism , Cell Proliferation , Stomach Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Cell Line, Tumor , Drug Screening Assays, Antitumor , Structure-Activity Relationship
14.
Eur J Med Chem ; 251: 115228, 2023 May 05.
Article in English | MEDLINE | ID: mdl-36881982

ABSTRACT

As an important epigenetic regulator, histone lysine specific demethylase 1 (LSD1) has become an attractive target for the discovery of anticancer agents. In this work, a series of tranylcypromine-based derivatives were designed and synthesized. Among them, compound 12u exhibited the most potent inhibitory potency on LSD1 (IC50 = 25.3 nM), and also displayed good antiproliferative effects on MGC-803, KYSE450 and HCT-116 cells with IC50 values of 14.3, 22.8 and 16.3 µM, respectively. Further studies revealed that compound 12u could directly act on LSD1 and inhibit LSD1 in MGC-803 cells, thereby significantly increasing the expression levels of mono-/bi-methylation of H3K4 and H3K9. In addition, compound 12u could induce apoptosis and differentiation, inhibit migration and cell stemness in MGC-803 cells. All these findings suggested that compound 12u was an active tranylcypromine-based derivative as a LSD1 inhibitor that inhibited gastric cancer.


Subject(s)
Antineoplastic Agents , Stomach Neoplasms , Humans , Tranylcypromine/pharmacology , Stomach Neoplasms/drug therapy , Enzyme Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Histone Demethylases/metabolism , Structure-Activity Relationship , Cell Proliferation
15.
Eur J Med Chem ; 252: 115281, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36940611

ABSTRACT

In this work, N-benzylarylamide-dithiocarbamate based derivatives were designed, synthesized, and their biological activities as anticancer agents were explored. Some of the 33 target compounds displayed significant antiproliferative activities with IC50 values at the double-digit nanomolar level. The representative compound I-25 (also named MY-943) not only showed the most effective inhibitory effects on three selected cancer cells MGC-803 (IC50 = 0.017 µM), HCT-116 (IC50 = 0.044 µM) and KYSE450 (IC50 = 0.030 µM), but also exhibited low nanomolar IC50 values from 0.019 to 0.253 µM against the other 11 cancer cells. Compound I-25 (MY-943) effectively inhibited tubulin polymerization and suppressed LSD1 at the enzymatic levels. Compound I-25 (MY-943) could act on the colchicine binding site of ß-tubulin, thus disrupting the construction of cell microtubule network and affecting the mitosis. In addition, compound I-25 (MY-943) could dose-dependently induce the accumulation of H3K4me1/2 (MGC-803 and SGC-7091 cells) and H3K9me2 (SGC-7091 cells). Compound I-25 (MY-943) could induce G2/M phase arrest and cell apoptosis, and suppress migration in MGC-803 and SGC-7901 cells. In addition, compound I-25 (MY-943) significantly modulated the expression of apoptosis- and cycle-related proteins. Furthermore, the binding modes of compound I-25 (MY-943) with tubulin and LSD1 were explored by molecular docking. The results of in vivo anti-gastric cancer assays using in situ tumor models showed that compound I-25 (MY-943) effectively reduced the weight and volume of gastric cancer in vivo without obvious toxicity. All these findings suggested that the N-benzylarylamide-dithiocarbamate based derivative I-25 (MY-943) was an effective dual inhibitor of tubulin polymerization and LSD1 that inhibited gastric cancers.


Subject(s)
Antineoplastic Agents , Stomach Neoplasms , Humans , Tubulin/metabolism , Cell Line, Tumor , Molecular Docking Simulation , Polymerization , Cell Proliferation , Tubulin Modulators/pharmacology , Tubulin Modulators/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Stomach Neoplasms/drug therapy , Histone Demethylases/metabolism , Structure-Activity Relationship , Drug Screening Assays, Antitumor
16.
Molecules ; 28(3)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36770809

ABSTRACT

Neuroblastoma has obvious heterogeneity. It is one of the few undifferentiated malignant tumors that can spontaneously degenerate into completely benign tumors. However, for its high-risk type, even with various intensive treatment options, the prognosis is still unsatisfactory. At the same time, a large number of research data show that the abnormal amplification and high-level expression of the MYCN gene are positively correlated with the malignant progression, poor prognosis, and mortality of neuroblastoma. In this context, this article explores the role of the N-Myc, MYCN gene expression product on its target genes related to the cell cycle and reveals its regulatory network in promoting tumor proliferation and malignant progression. We hope it can provide ideas and direction for the research and development of drugs targeting N-Myc and its downstream target genes.


Subject(s)
Neuroblastoma , Nuclear Proteins , Humans , Nuclear Proteins/metabolism , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Genes, myc , Cell Cycle/genetics , Neuroblastoma/pathology , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
17.
Bioorg Chem ; 133: 106425, 2023 04.
Article in English | MEDLINE | ID: mdl-36801788

ABSTRACT

Vascular epidermal growth factor receptor-2 (VEGFR-2), as an important tyrosine transmembrane protein, plays an important role in regulating endothelial cell proliferation and migration, regulating angiogenesis and other biological functions. VEGFR-2 is aberrantly expressed in many malignant tumors, and it is also related to the occurrence, development, and growth of tumors and drug resistance. Currently, there are nine VEGFR-2 targeted inhibitors approved by US.FDA for clinical use as anticancer drugs. Due to the limited clinical efficacy and potential toxicity of VEGFR inhibitors, it is necessary to develop new strategies to improve the clinical efficacy of VEGFR inhibitors. The development of multitarget therapy, especially dual-target therapy, has become a hot research field of cancer therapy, which may provide an effective strategy with higher therapeutic efficacy, pharmacokinetic advantages and low toxicity. Many groups have reported that the therapeutic effects could be improved by simultaneously inhibiting VEGFR-2 and other targets, such as EGFR, c-Met, BRAF, HDAC, etc. Therefore, VEGFR-2 inhibitors with multi-targeting capabilities have been considered to be promising and effective anticancer agents for cancer therapy. In this work, we reviewed the structure and biological functions of VEGFR-2, and summarized the drug discovery strategies, and inhibitory activities of VEGFR-2 inhibitors with multi-targeting capabilities reported in recent years. This work might provide the reference for the development of VEGFR-2 inhibitors with multi-targeting capabilities as novel anticancer agents.


Subject(s)
Antineoplastic Agents , Neoplasms , Vascular Endothelial Growth Factor Receptor-2 , Humans , Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Cell Proliferation , Drug Discovery , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Vascular Endothelial Growth Factor Receptor-2/metabolism
18.
Bioorg Chem ; 131: 106328, 2023 02.
Article in English | MEDLINE | ID: mdl-36542986

ABSTRACT

Epigenetic regulation and Focal adhesion kinase (FAK) are considered to be two important targets for the development of antitumor drugs. Studies have shown that the combination of FAK and HDAC inhibitors could exhibit synergistic effects in a subset of cancer cells in vitro and in vivo. At present, there are few reports on dual target inhibitors of FAK and HDAC. Here, we first reported a new compound MY-1259 as a dual FAK and HDAC6 inhibitor, which exhibited efficient treatment effects on gastric cancers in vitro and in vivo. MY-1259 exhibited potent inhibitory activities against FAK (IC50 = 132 nM) and HDAC6 (IC50 = 16 nM). Notably, MY-1259 showed selective inhibitory potency on HDAC6 over HDAC1, HDAC2 and HDAC3. In addition, MY-1259 could potently inhibit the proliferative activities of MGC-803 and BGC-823 cells (IC50 = 3.91 and 15.46 nM, respectively, using flow cytometry counting), induce cell apoptosis, and cellular senescence. MY-1259 could effectively down-regulate the levels of Ac-Histone H3 and Ac-α-tubulin, and also inhibit the phosphorylation of FAK at three phosphorylation sites Y397, Y576/577 and Y925, thereby inhibiting the activation of ERK and AKT/mTOR. MY-1259 exhibited more effective antitumor effect in vivo than the HDAC inhibitor SAHA and FAK inhibitor TAE-226 alone or in combination, showing the advantages of FAK/HDAC dual inhibitors in the treatment of gastric cancers. Therefore, the results in this work suggested that inhibition of FAK and HDAC by MY-1259 might represent a promising strategy for the treatment of gastric cancers.


Subject(s)
Antineoplastic Agents , Focal Adhesion Protein-Tyrosine Kinases , Histone Deacetylase Inhibitors , Stomach Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation , Epigenesis, Genetic , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Stomach Neoplasms/drug therapy , Structure-Activity Relationship
19.
Fundam Clin Pharmacol ; 37(2): 385-391, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36300811

ABSTRACT

The aim of this study was to investigate the effect of a high-fat meal on the single-dose pharmacokinetics (PK) and tolerability of HMPL-689 in Chinese healthy volunteers. In this study, 34 eligible male volunteers received a single 30-mg dose of HMPL-689 capsules following an overnight fast or a high-fat breakfast prior to dosing. Blood samples were collected at the designated time points for pharmacokinetic analysis. Safety and tolerability were assessed throughout the study. Total 32 healthy male volunteers were completed in the study. The GMRs of AUC0-t , AUC0-∞ , and Cmax and their 90% CIs were 1.12 (1.09, 1.15), 1.12 (1.09, 1.15), and 0.64 (0.58, 0.70), respectively, in healthy male subjects after oral administration of HMPL-689 following intake of a high-fat diet versus under fasting state. The 90% CI of Cmax GMR fell outside the acceptable equivalent range (0.8-1.25). In addition, the median Tmax of HMPL-689 was 1.0 and 4.0 h under the fasting and the fed conditions. The study indicated that intake of a high-fat diet had an impact on the in vivo PK profile of HMPL-689 in healthy Chinese male subjects, which could obviously reduce the oral absorption rate of HMPL-689 and had little effect on the extent of oral absorption (AUC).


Subject(s)
East Asian People , Food-Drug Interactions , Humans , Male , Biological Availability , Healthy Volunteers , Cross-Over Studies , Area Under Curve , Protein Kinase Inhibitors/pharmacokinetics , Administration, Oral , Fasting
20.
Eur J Med Chem ; 245(Pt 1): 114898, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36370552

ABSTRACT

50 New drugs including 36 chemical entities and 14 biologics were approved by the U.S. Food and Drug Administration during 2021. Among the marketed drugs, 31 new small molecule agents (29 small molecule drugs and 2 diagnostic agents) with privileged structures and novel clinical applications represent as promising leads for the development of new drugs with the similar indications and improved therapeutic efficacy. This review is mainly focused on the clinical applications and synthetic methods of 29 small molecule drugs newly approved by the FDA in 2021. We believed that insight into the synthetic approaches of drug molecules would provide creative and practical inspirations for the development of more efficient and practical synthetic technologies to meet with new drug discovery.


Subject(s)
Biological Products , Drug Approval , Pharmaceutical Preparations , Biological Products/pharmacology , Biological Products/therapeutic use , Biological Products/chemistry , Drug Discovery , Pharmaceutical Preparations/chemical synthesis , Pharmaceutical Preparations/chemistry , United States , United States Food and Drug Administration , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...