Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 12: 647921, 2021.
Article in English | MEDLINE | ID: mdl-33815337

ABSTRACT

Freshwater reservoirs emit greenhouse gases (GHGs) such as methane (CH4) and carbon dioxide (CO2), contributing to global warming, mainly when impacted by untreated sewage and other anthropogenic sources. These gases can be produced by microbial organic carbon decomposition, but little is known about the microbiota and its participation in GHG production and consumption in these environments. In this paper we analyzed the sediment microbiota of three eutrophic tropical urban freshwater reservoirs, in different seasons and evaluated the correlations between microorganisms and the atmospheric CH4 and CO2 flows, also correlating them to limnological variables. Our results showed that deeper water columns promote high methanogen abundance, with predominance of acetoclastic Methanosaeta spp. and hydrogenotrophs Methanoregula spp. and Methanolinea spp. The aerobic methanotrophic community was affected by dissolved total carbon (DTC) and was dominated by Crenothrix spp. However, both relative abundance of the total methanogenic and aerobic methanotrophic communities in sediments were uncoupled to CH4 and CO2 flows. Network based approach showed that fermentative microbiota, including Leptolinea spp. and Longilinea spp., which produces substrates for methanogenesis, influence CH4 flows and was favored by anthropogenic pollution, such as untreated sewage loads. Additionally, less polluted conditions favored probable anaerobic methanotrophs such as Candidatus Bathyarchaeota, Sva0485, NC10, and MBG-D/DHVEG-1, which promoted lower gaseous flows, confirming the importance of sanitation improvement to reduce these flows in tropical urban freshwater reservoirs and their local and global warming impact.

2.
Microb Ecol ; 81(4): 954-964, 2021 May.
Article in English | MEDLINE | ID: mdl-33392629

ABSTRACT

Methanotrophic bacteria can use methane as sole carbon and energy source. Its importance in the environment is related to the mitigation of methane emissions from soil and water to the atmosphere. Brazilian mangroves are highly productive, have potential to methane production, and it is inferred that methanotrophic community is of great importance for this ecosystem. The scope of this study was to investigate the functional and taxonomic diversity of methanotrophic bacteria present in the anthropogenic impacted sediments from Bertioga´s mangrove (SP, Brazil). Sediment sample was cultivated with methane and the microbiota actively involved in methane oxidation was identified by DNA-based stable isotope probing (DNA-SIP) using methane as a labeled substrate. After 4 days (96 h) of incubation and consumption of 0.7 mmol of methane, the most active microorganisms were related to methanotrophs Methylomonas and Methylobacter as well as to methylotrophic Methylotenera, indicating a possible association of these bacterial groups within a methane-derived food chain in the Bertioga mangrove. The abundance of genera Methylomonas, able to couple methane oxidation to nitrate reduction, may indicate that under low dissolved oxygen tensions, some aerobic methanotrophs could shift to intraerobic methane oxidation to avoid oxygen starvation.


Subject(s)
Methane , Microbiota , Brazil , DNA , Isotopes , Oxidation-Reduction , Phylogeny , Soil Microbiology
4.
Mol Biol Rep ; 46(5): 5309-5321, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31346912

ABSTRACT

A microbial community was enriched in the anoxic compartment of a pilot-scale bioreactor that was operated for 180 days, fed with sewage and designed for organic matter, nitrogen and sulfide removal by coupling anaerobic digestion, nitrification and mixotrophic denitrification. Denitrification occurred with endogenous electron donors, mainly sulfide and residual organic matter, coming from the anaerobic compartment. The microorganisms involved in denitrification with sulfide as electron donor were identified by DNA-stable isotope probing with [U-13C]-labelled CO2 and NaHCO3. Complete denitrification occurred every two days, and the applied NO3-/S2- ratio was 1.6. Bacteria belonging to the Sulfurimonas denitrificans was identified as a chemoautotrophic denitrifier, and those related to Georgfuchisa toluolica, Geothrix fermentans and Ferritrophicum radicicola were most probably associated with heterotrophic denitrification using endogenous cells and/or intermediate metabolites. This study showed that DNA-SIP was a suitable technique to identify the active microbiota involved in sulfide-driven denitrification in a complex environment, which may contribute to improve design and operation of bioreactors aiming for carbon-nitrogen-sulfur removal.


Subject(s)
Bioreactors/microbiology , Denitrification/physiology , Sulfides/metabolism , Acidobacteria/genetics , Bacteria/genetics , Batch Cell Culture Techniques/methods , Betaproteobacteria/genetics , Helicobacteraceae/genetics , Isotope Labeling/methods , Isotopes , Nitrates , Nitrogen/metabolism , Sewage , Sulfides/chemistry
5.
Bioprocess Biosyst Eng ; 39(2): 341-52, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26638967

ABSTRACT

A pilot-scale reactor treating domestic sewage was operated to promote anaerobic digestion and denitrification using endogenous electron donors. While 55 % of organic matter was removed, nitrogen and sulfur showed a different dynamics during the operation. Pyrosequencing analysis clarified this behavior revealing that specific microbial communities inhabited the anaerobic (47.05 % of OTUs) and anoxic (31.39 % of OTUs) chambers. Analysis of 16S rRNA gene partial sequences obtained through pyrosequencing revealed a total of 1727 OTUs clustered at a 3 % distance cutoff. In the anaerobic chamber, microbial community was comprised of fermentative, syntrophic and sulfate-reducing bacteria. The majority of sequences were related to Aminobacterium and Syntrophorhabdus. In the anoxic chamber, the majority of sequences were related to mixotrophic and strictly autotrophic denitrifiers Arcobacter and Sulfuricurvum, respectively, both involved in sulfur-driven denitrification. These results show that pyrosequencing was a powerful tool to investigate the microbial panorama of a complex system, providing new insights to the improvement of the system.


Subject(s)
Bacteria/growth & development , Denitrification/physiology , Microbial Consortia/physiology , Sewage/microbiology , Sulfur/metabolism , Anaerobiosis , Bacteria/classification , Bacteria/genetics , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics
6.
Environ Microbiol ; 14(5): 1171-81, 2012 May.
Article in English | MEDLINE | ID: mdl-22296107

ABSTRACT

An anaerobic microbial community was enriched in a chemostat that was operated for more than 8 years with benzene and nitrate as electron acceptor. The coexistence of multiple species in the chemostat and the presence of a biofilm, led to the hypothesis that benzene-degrading species coexist in a syntrophic interaction, and that benzene can be degraded in syntrophy by consortia with various electron acceptors in the same culture. The benzene-degrading microorganisms were identified by DNA-stable isotope probing with [U-(13) C]-labelled benzene, and the effect of different electron donors and acceptors on benzene degradation was investigated. The degradation rate constant of benzene with nitrate (0.7 day(-1) ) was higher than reported previously. In the absence of nitrate, the microbial community was able to use sulfate, chlorate or ferric iron as electron acceptor. Bacteria belonging to the Peptococcaceae were identified as dominant benzene consumers, but also those related to Rhodocyclaceae and Burkholderiaceae were found to be associated with the anaerobic benzene degradation process. The benzene degradation activity in the chemostat was associated with microbial growth in biofilms. This, together with the inhibiting effect of hydrogen and the ability to degrade benzene with different electron acceptors, suggests that benzene was degraded via a syntrophic process.


Subject(s)
Benzene/metabolism , Peptococcaceae/physiology , Anaerobiosis , Burkholderiaceae/metabolism , Burkholderiaceae/physiology , Chlorates/metabolism , Nitrates/metabolism , Peptococcaceae/metabolism , Rhodocyclaceae/metabolism , Rhodocyclaceae/physiology , Sulfates/metabolism
7.
FEMS Microbiol Ecol ; 70(3): 575-85, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19799633

ABSTRACT

A bacterium (strain G5G6) that grows anaerobically with toluene was isolated from a polluted aquifer (Banisveld, the Netherlands). The bacterium uses Fe(III), Mn(IV) and nitrate as terminal electron acceptors for growth on aromatic compounds. The bacterium does not grow on sugars, lactate or acetate. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain G5G6 belonged to the Betaproteobacteria. Its closest, but only distantly related, cultured relative is Sterolibacterium denitrificans Chol-1S(T) (94.6% similarity of the 16S rRNA genes), a cholesterol-oxidizing, denitrifying bacterium. Strain G5G6 possesses the benzylsuccinate synthase A (bssA) gene encoding the alpha-subunit of Bss, which catalyzes the first step in anaerobic toluene degradation. The deduced BssA amino acid sequence is closely related to those of Azoarcus and Thauera species, which also belong to the Betaproteobacteria. Strain G5G6 is the first toluene-degrading, iron-reducing bacterium that does not belong to the Geobacteraceae within the Deltaproteobacteria. Based on phylogenetic and physiological comparison, strain G5G6 could not be assigned to a described species. Therefore, strain G5G6 (DSMZ 19032(T)=JCM 14632(T)) is a novel taxon of the Betaproteobacteria. We propose the name Georgfuchsia toluolica gen. nov., sp. nov.


Subject(s)
Betaproteobacteria/classification , Ferric Compounds/metabolism , Nitrates/metabolism , Phylogeny , Betaproteobacteria/genetics , Betaproteobacteria/growth & development , Betaproteobacteria/metabolism , Biodegradation, Environmental , Carbon-Carbon Lyases/genetics , DNA, Bacterial/genetics , Fresh Water/microbiology , Netherlands , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Toluene/metabolism , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...