Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 148: 201-210, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29055204

ABSTRACT

The waste water treatment plant (WWTP) of the city of Bizerte concentrates different types of chemical and biological pollutants in the Bizerte lagoon (Tunisia). Considering four upstream and downstream WWTP discharge stations, seventy nine, culturable bacterial strains were isolated and identified from water and sediment as fecal coliforms, fecal streptococci, pathogenic staphylococci and non-enterobacteriacea. Fecal coliforms were most abundant (2.5 105 bacteria/mg) in sediment of WWTP discharge. Leuconostoc spp (23.1%) and Chryseomonasluteola (23.1%) were the most prevalent culturable fecal indicator bacteria (FIB) isolated at the upstream discharge stations. However, Staphylococcus xylosus (13.9%) was the most prevalent culturable FIB isolated at the WWTP discharge stations. Moreover, high antibioticresistance phenotypes were present in all sampling stations, but especially in WWTP discharge station in both water and sediment. Resistance levels in water and sediment, respectively were amoxicillin (58.8%; 34.8%), penicillin (50%; 31.6%), oxacillin (60%; 33.3%), cefotaxim (55.2%; 39.1%), ceftazidim (66.7%; 50%), gentamycin (42.9%; 38.9%), tobramycin (50%; 25%), vancomycin (33.3; 71.4%), amikacin (66.7%; 0%) and ciprofloxacin (100%; 100%). Interestingly, ß-lactam antibiotic resistant FIB were mostly isolated from water as well as from sediments of upstream and WWTP discharge station. Canonical correspondence analysis CCA correlating antibiotic resistance profile with the abiotic data showed that, in water column, culturable bacterial strains isolated in upstream WWTP discharge stations were interestingly correlated with the resistance to amikacin, oxacillin, cefotaxim, ciprofloxacin and gentamycin, however, in sediment, they were correlated with the resistance to amoxicillin, oxacillin, céfotaxim and vancomycin. Serious ß-lactams and aminoglycosides acquired resistance appeared mainly in fecal streptococci and pathogen staphylococci groups.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Feces/microbiology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Water Purification/methods , Anti-Bacterial Agents/analysis , Biodiversity , Geologic Sediments/microbiology , Gram-Negative Bacteria/isolation & purification , Gram-Positive Bacteria/isolation & purification , Tunisia , Wastewater/microbiology
2.
Front Microbiol ; 7: 1303, 2016.
Article in English | MEDLINE | ID: mdl-27594854

ABSTRACT

Benthic microorganisms are key players in the recycling of organic matter and recalcitrant compounds such as polyaromatic hydrocarbons (PAHs) in coastal sediments. Despite their ecological importance, the response of microbial communities to chronic PAH pollution, one of the major threats to coastal ecosystems, has received very little attention. In one of the largest surveys performed so far on coastal sediments, the diversity and composition of microbial communities inhabiting both chronically contaminated and non-contaminated coastal sediments were investigated using high-throughput sequencing on the 18S and 16S rRNA genes. Prokaryotic alpha-diversity showed significant association with salinity, temperature, and organic carbon content. The effect of particle size distribution was strong on eukaryotic diversity. Similarly to alpha-diversity, beta-diversity patterns were strongly influenced by the environmental filter, while PAHs had no influence on the prokaryotic community structure and a weak impact on the eukaryotic community structure at the continental scale. However, at the regional scale, PAHs became the main driver shaping the structure of bacterial and eukaryotic communities. These patterns were not found for PICRUSt predicted prokaryotic functions, thus indicating some degree of functional redundancy. Eukaryotes presented a greater potential for their use as PAH contamination biomarkers, owing to their stronger response at both regional and continental scales.

3.
Environ Sci Pollut Res Int ; 23(1): 36-48, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26165992

ABSTRACT

This study aimed to identify the most commonly used agricultural pesticides around Ichkeul Lake-Bizerta Lagoon watershed. First survey of pesticide use on agricultural watershed was performed with farmers, Regional Commissioner for Agricultural Development, and pesticide dealers. Then, sediment contamination by pesticides and response of benthic communities (bacteria and free-living marine nematode) were investigated. The analysis of 22 active organochlorine pesticides in sediments was performed according to quick, easy, cheap, effective, rugged, and safe (QuEChERS) method, biodiversity of indigenous bacterial community sediment was determined by terminal restriction fragment length polymorphism (T-RFLP), and free-living marine nematodes were counted. The results of the field survey showed that iodosulfuron, mesosulfuron, 2,4-dichlorophenoxyacetic acid (2,4 D), glyphosate, and fenoxaprops were the most used herbicides, tebuconazole and epoxiconazole the most used fungicides, and deltamethrin the most used insecticide. Sixteen organochlorine pesticide compounds among the 22 examined were detected in sediments up to 2 ppm in Ichkeul Lake, endrin, dieldrin, and hexachlorocyclohexane being the most detected molecules. The most pesticide-contaminated site in the lake presented the higher density of nematode, but when considering all sites, no clear correlation with organochlorine pesticide (OCP) content could be established. The bacterial community structure in the most contaminated site in the lake was characterized by the terminal restriction fragments (T-RFs) 97, 146, 258, 285, and 335 while the most contaminated site in the lagoon was characterized by the T-RFs 54, 263, 315, 403, and 428. Interestingly, T-RFs 38 and 143 were found in the most contaminated sites of both lake and lagoon ecosystems, indicating that they were resistant to OCPs and able to cope with environmental fluctuation of salinity. In contrast, the T-RFs 63, 100, 118, and 381 in the lake and the T-RFs 40, 60, 80, 158, 300, 321, and 357 in the lagoon were sensitive to OCPs. This study highlighted that the intensive use of pesticides in agriculture, through transfer to aquatic ecosystem, may disturb the benthic ecosystem functioning of the protected area. The free-living marine nematodes and bacterial communities represent useful proxy to follow the ecosystem health and its capacity of resilience.


Subject(s)
Bacteria/drug effects , Lakes , Nematoda/drug effects , Pesticides , Water Pollutants, Chemical , 2,4-Dichlorophenoxyacetic Acid , Agriculture , Animals , Dieldrin , Ecosystem , Hydrocarbons, Chlorinated/analysis , Insecticides/analysis , Lakes/chemistry , Pesticides/analysis , Tunisia , Water Pollutants, Chemical/analysis
4.
Environ Sci Pollut Res Int ; 22(20): 15307-18, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25103943

ABSTRACT

The objectives of this study were (1) to assess the responses of benthic nematodes to a polycyclic aromatic hydrocarbon (PAH) contamination and (2) to test bioremediation techniques for their efficiency in PAH degradation and their effects on nematodes. Sediments with their natural nematofauna communities from Bizerte lagoon (Tunisia) were subjected to a PAH mixture (100 ppm) of phenanthrene, fluoranthene, and pyrene during 30 days. Nematode abundance and diversity significantly decreased, and the taxonomic structure was altered. Results from multivariate analyses of the species abundance data revealed that PAH treatments were significantly different from the control. Spirinia parasitifera became the dominant species (70 % relative abundance) and appeared to be an "opportunistic" species to PAH contamination while Oncholaimus campylocercoides and Neochromadora peocilosoma were strongly inhibited. Biostimulation (addition of mineral salt medium) and bioaugmentation (inoculation of a hydrocarbonoclastic bacterium) were used as bioremediation techniques. Bioremediation treatments enhanced degradation of all three PAHs, with up to 96 % degradation for phenanthrene resulting in a significant stimulation of nematode abundance relative to control microcosms. Nevertheless, these treatments, especially the biostimulation provoked a weak impact on the community structure and diversity index relative to the control microcosms suggesting their feasibility in biorestoration of contaminated sediments.


Subject(s)
Nematoda , Phenanthrenes/metabolism , Pyrenes/metabolism , Water Pollutants, Chemical/metabolism , Animals , Bacteria/metabolism , Biodegradation, Environmental , Fluorenes/metabolism , Geologic Sediments/chemistry , Multivariate Analysis , Tunisia
5.
Environ Sci Pollut Res Int ; 21(5): 3670-9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24277429

ABSTRACT

A microcosm experiment was setup to examine (1) the effect of phenanthrene contamination on meiofauna and bacteria communities and (2) the effects of different bioremediation strategies on phenanthrene degradation and on the community structure of free-living marine nematodes. Sediments from Bizerte lagoon were contaminated with (100 mg kg(-1)) phenanthrene and effects were examined after 20 days. Biostimulation (addition of nitrogen and phosphorus fertilizer or mineral salt medium) and bioaugmentation (inoculation of a hydrocarbonoclastic bacterium) were used as bioremediation treatments. Bacterial biomass was estimated using flow cytometry. Meiofauna was counted and identified at the higher taxon level using a stereomicroscope. Nematodes, comprising approximately two thirds of total meiofauna abundance, were identified to genus or species. Phenanthrene contamination had a severe impact on bacteria and meiofauna abundances with a strong decrease of nematodes with a complete disappearance of polychaetes and copepods. Bioremediation counter balanced the toxic effects of phenanthrene since meiofauna and bacteria abundances were significantly higher (p < 0.01) than those observed in phenanthrene contamination. Up to 98 % of phenanthrene removal was observed. In response to phenanthrene contamination, the nematode species had different behavior: Daptonema fallax was eliminated in contaminated microcosms, suggesting that it is an intolerant species to phenanthrene; Neochromadora peocilosoma, Spirinia parasitifera, and Odontophora n. sp., which significantly (p < 0.05) increased in contaminated microcosms, could be considered as "opportunistic" species to phenanthrene whereas Anticoma acuminata and Calomicrolaimus honestus increased in the treatment combining biostimulation and bioaugmentation. Phenanthrene had a significant effect on meiofaunal and bacterial abundances (p < 0.05), with a strong reduction of density and change in the nematode communities. Biostimulation using mineral salt medium strongly enhanced phenanthrene removal, leading to a decrease of its toxicity. This finding opens exciting axes for the future use of biostimulation to reduce toxic effects of PAHs for meiofauna and bacteria in lagoon sediment.


Subject(s)
Bacillus megaterium/metabolism , Nematoda/drug effects , Phenanthrenes/toxicity , Water Pollutants, Chemical/toxicity , Animals , Bacillus megaterium/drug effects , Bacterial Load , Biodegradation, Environmental , Biodiversity , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Nematoda/classification , Nitrogen/pharmacology , Phosphorus/pharmacology
6.
Chemosphere ; 93(10): 2535-46, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24206831

ABSTRACT

Biological interactions between metazoans and the microbial community play a major role in structuring food webs in aquatic sediments. Pollutants can also strongly affect the structure of meiofauna and microbial communities. This study aims investigating, in a non-contaminated sediment, the impact of meiofauna on bacteria facing contamination by a mixture of three PAHs (fluoranthene, phenanthrene and pyrene). Sediment microcosms were incubated in the presence or absence of meiofauna during 30 days. Bioremediation treatments, nutrient amendment and addition of a hydrocarbon-degrading bacterium, were also tested to enhance PAH biodegradation. Results clearly show the important role of meiofauna as structuring factor for bacterial communities with significant changes observed in the molecular fingerprints. However, these structural changes were not concomitant with changes in biomass or function. PAH contamination had a severe impact on total meiofaunal abundance with a strong decrease of nematodes and the complete disappearance of polychaetes and copepods. In contrast, correspondence analysis, based on T-RFLP fingerprints, showed that contamination by PAH resulted in small shifts in microbial composition, with or without meiofauna, suggesting a relative tolerance of bacteria to the PAH cocktail. The PAH bioremediation treatments were highly efficient with more than 95% biodegradation. No significant difference was observed in presence or absence of meiofauna. Nutrient addition strongly enhanced bacterial and meiofaunal abundances as compared to control and contaminated microcosms, as well as inducing important changes in the bacterial community structure. Nutrients thus were the main structural factor in shaping bacterial community composition, while the role of meiofauna was less evident.


Subject(s)
Bacteria/drug effects , Ecosystem , Water Microbiology , Water Pollutants, Chemical/toxicity , Bacteria/classification , Biodegradation, Environmental , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Polycyclic Aromatic Hydrocarbons/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...