Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Toxicon ; 60(4): 596-602, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22699107

ABSTRACT

Peptides isolated from animal venoms have shown the ability to regulate pancreatic beta cell function. Characterization of wasp venoms is important, since some components of these venoms present large molecular variability, and potential interactions with different signal transduction pathways. For example, the well studied mastoparan peptides interact with a diversity of cell types and cellular components and stimulate insulin secretion via the inhibition of ATP dependent K(+) (K(ATP)) channels, increasing intracellular Ca(2+) concentration. In this study, the insulin secretion of isolated pancreatic islets from adult Swiss mice was evaluated in the presence of synthetic Agelaia MP-I (AMP-I) peptide, and some mechanisms of action of this peptide on endocrine pancreatic function were characterized. AMP-I was manually synthesized using the Fmoc strategy, purified by RP-HPLC and analyzed using ESI-IT-TOF mass spectrometry. Isolated islets were incubated at increasing glucose concentrations (2.8, 11.1 and 22.2 mM) without (Control group: CTL) or with 10 µM AMP-I (AMP-I group). AMP-I increased insulin release at all tested glucose concentrations, when compared with CTL (P < 0.05). Since molecular analysis showed a potential role of the peptide interaction with ionic channels, insulin secretion was also analyzed in the presence of 250 µM diazoxide, a K(ATP) channel opener and 10 µM nifedipine, a Ca(2+) channel blocker. These drugs abolished insulin secretion in the CTL group in the presence of 2.8 and 11.1 mM glucose, whereas AMP-I also enhanced insulin secretory capacity, under these glucose conditions, when incubated with diazoxide and nifedipine. In conclusion, AMP-I increased beta cell secretion without interfering in K(ATP) and L-type Ca(2+) channel function, suggesting a different mechanism for this peptide, possibly by G protein interaction, due to the structural similarity of this peptide with Mastoparan-X, as obtained by modeling.


Subject(s)
Hypoglycemic Agents/pharmacology , Insect Proteins/pharmacology , Insulin/metabolism , Islets of Langerhans/drug effects , Peptides/pharmacology , Wasp Venoms/chemistry , Animals , Calcium/metabolism , Cells, Cultured , Chromatography, High Pressure Liquid , Hypoglycemic Agents/chemical synthesis , Insect Proteins/chemical synthesis , Insect Proteins/metabolism , Insulin Secretion , Islets of Langerhans/metabolism , KATP Channels/drug effects , Male , Mice , Peptides/chemical synthesis , Spectrometry, Mass, Electrospray Ionization , Stereoisomerism , Wasp Venoms/chemical synthesis , Wasp Venoms/pharmacology , Wasps
2.
Curr Med Chem ; 18(9): 1299-310, 2011.
Article in English | MEDLINE | ID: mdl-21366533

ABSTRACT

The enzymes of the shikimate pathway represent potential molecular targets for the development of non-toxic antimicrobial agents and anti-parasite drugs. One of the most promising of these enzymes is shikimate kinase (EC 2.7.1.71), which is responsible for the fifth step in the shikimate pathway. This enzyme phosphorylates shikimic acid to yield shikimate-3-phosphate, using ATP as a substrate. In this work, the conformational dynamics of the shikimate kinase from Mycobacterium tuberculosis was investigated in its apostate in solution. For this study, the enzyme was subjected to a gradient of temperatures from 15°C to 45°C in the presence or absence of deuterium oxide, and the amide H/D exchange was monitored using ESI-mass spectrometry. We observed: i) the phosphate binding domain in the apo-enzyme is fairly rigid and largely protected from solvent access, even at relatively high temperatures; ii) the shikimate binding domain is highly flexible, as indicated by the tendency of the apo-enzyme to exhibit large conformational changes to permit LID closure after the shikimate binding; iii) the nucleotide binding domain is initially conformationally rigid, which seems to favour the initial orientation of ADP/ATP, but becomes highly flexible at temperatures above 30°C, which may permit domain rotation; iv) part of the LID domain, including the phosphate binding site, is partially rigid, while another part is highly flexible and accessible to the solvent.


Subject(s)
Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/enzymology , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Amino Acid Sequence , Antitubercular Agents/chemistry , Antitubercular Agents/therapeutic use , Deuterium Exchange Measurement , Deuterium Oxide/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Kinetics , Molecular Sequence Data , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Spectrometry, Mass, Electrospray Ionization , Temperature , Tuberculosis/drug therapy
3.
Amino Acids ; 40(1): 101-11, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20177946

ABSTRACT

Stings by bees and wasps, including Brazilian species, are a severe public health problem. The local reactions observed after the envenoming includes typical inflammatory response and pain. Several studies have been performed to identify the substances, including peptides that are responsible for such phenomena. The aim of the present study is to characterize the possible nociceptive (hyperalgesic) and edematogenic effects of some peptides isolated from the venoms of the honeybee (Apis mellifera) and the social wasps Polybia paulista and Protonectarina sylveirae, in addition to characterize some of the mechanisms involved in these phenomena. For this purpose, different doses of the peptides mellitin (Apis mellifera), Polybia-MP-I, N-2-Polybia-MP-I (Polybia paulista), Protonectarina-MP-NH2 and Protonectarina-MP-OH (Protonectarina sylveirae) were injected into the hind paw of mice. Hyperalgesia and edema were determined after peptide application, by using an electronic von Frey apparatus and a paquimeter. Carrageenin and saline were used as controls. Results showed that melittin, Polybia-MP-I, N-2-Polybia-MP-I, Protonectarina-MP-NH(2) and Protonectarina-MP-OH peptides produced a dose- and time-related hyperalgesic and edematogenic responses. Both phenomena are detected 2 h after melittin, Polybia-MP-I, N-2-Polybia-MP-I injection; their effects lasted until 8 h. In order to evaluate the role of prostanoids and the involvement of lipidic mediators in hyperalgesia induced by the peptides, indomethacin and zileuton were used. Results showed that zileuton blocked peptide-induced hyperalgesia and induced a decrease of the edematogenic response. On the other hand, indomethacin did not interfere with these phenomena. These results indicate that melittin, Polybia-MP-I, N-2-Polybia-MP-I, Protonectarina-MP-NH(2), and Protonectarina-MP-OH peptides could contribute to inflammation and pain induced by insect venoms.


Subject(s)
Bee Venoms/adverse effects , Bees/chemistry , Bites and Stings/chemically induced , Edema/chemically induced , Hyperalgesia/chemically induced , Wasp Venoms/adverse effects , Animals , Bee Venoms/immunology , Bee Venoms/isolation & purification , Bites and Stings/immunology , Edema/immunology , Humans , Hyperalgesia/immunology , Male , Mice , Pain/chemically induced , Pain/immunology , Wasp Venoms/immunology , Wasp Venoms/isolation & purification , Wasps/chemistry
4.
Mol Endocrinol ; 25(1): 15-31, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21106879

ABSTRACT

Thyroid hormone receptors (TRs) are ligand-gated transcription factors with critical roles in development and metabolism. Although x-ray structures of TR ligand-binding domains (LBDs) with agonists are available, comparable structures without ligand (apo-TR) or with antagonists are not. It remains important to understand apo-LBD conformation and the way that it rearranges with ligands to develop better TR pharmaceuticals. In this study, we conducted hydrogen/deuterium exchange on TR LBDs with or without agonist (T(3)) or antagonist (NH3). Both ligands reduce deuterium incorporation into LBD amide hydrogens, implying tighter overall folding of the domain. As predicted, mass spectroscopic analysis of individual proteolytic peptides after hydrogen/deuterium exchange reveals that ligand increases the degree of solvent protection of regions close to the buried ligand-binding pocket. However, there is also extensive ligand protection of other regions, including the dimer surface at H10-H11, providing evidence for allosteric communication between the ligand-binding pocket and distant interaction surfaces. Surprisingly, C-terminal activation helix H12, which is known to alter position with ligand, remains relatively protected from solvent in all conditions suggesting that it is packed against the LBD irrespective of the presence or type of ligand. T(3), but not NH3, increases accessibility of the upper part of H3-H5 to solvent, and we propose that TR H12 interacts with this region in apo-TR and that this interaction is blocked by T(3) but not NH3. We present data from site-directed mutagenesis experiments and molecular dynamics simulations that lend support to this structural model of apo-TR and its ligand-dependent conformational changes.


Subject(s)
Deuterium Exchange Measurement , Receptors, Thyroid Hormone/agonists , Receptors, Thyroid Hormone/antagonists & inhibitors , Amino Acid Sequence , Ammonia/pharmacology , Apoproteins/chemistry , Apoproteins/metabolism , Deuterium/metabolism , Humans , Ligands , Molecular Dynamics Simulation , Molecular Sequence Data , Mutation/genetics , Peptides/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary , Receptors, Thyroid Hormone/chemistry , Sequence Alignment , Solvents , Triiodothyronine/pharmacology
5.
Amino acids ; 40(1): 101-111, 2011.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1059628

ABSTRACT

Stings by bees and wasps, including Brazilian species, are a severe public health problem. The local reactions observed after the envenoming includes typical inflammatory response and pain. Several studies have been performed to identify the substances, including peptides that are responsible for such phenomena. The aim of the present study is to characterize the possible nociceptive (hyperalgesic) and edematogenic effects of some peptides isolated from the venoms of the honeybee (Apis mellifera) and the social wasps Polybia paulista and Protonectarina sylveirae, in addition to characterize some of the mechanisms involved in these phenomena. For this purpose, different doses of the peptides mellitin (Apis mellifera), Polybia-MP-I, N-2-Polybia-MP-I (Polybia paulista), Protonectarina-MP-NH2 and Protonectarina-MP-OH (Protonectarina sylveirae) were injected into the hind paw of mice. Hyperalgesia and edema were determined after peptide application, by using an electronic von Frey apparatus and a paquimeter. Carrageenin and saline were used as controls. Results showed that melittin, Polybia-MP-I, N-2-Polybia-MP-I, Protonectarina-MP-NH2 and Protonectarina-MP-OH peptides produced a dose- and time-related hyperalgesic and edematogenic responses. Both phenomena are detected 2 h after melittin, Polybia-MP-I, N-2-Polybia-MP-I injection; their effects lasted until 8 h. In order to evaluate the role of prostanoids and the involvement of lipidic mediators in hyperalgesia induced by the peptides, indomethacin and zileuton were used. Results showed that zileuton blocked peptide-induced hyperalgesia and induced a decrease of the edematogenic response. On the other hand, indomethacin did not interfere with these phenomena. These results indicate that melittin, Polybia-MP-I, N-2-Polybia-MP-I, Protonectarina-MP-NH2, and Protonectarina-MP-OH peptides could contribute to inflammation and pain induced by insect venoms.


Subject(s)
Male , Female , Animals , Peptides , Bees , Wasps
SELECTION OF CITATIONS
SEARCH DETAIL
...