Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med ; 30(2): 178-83, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23764298

ABSTRACT

In this Study characteristics of a new 170Tm brachytherapy seed using thermoluminescent dosimeter and also the Monte Carlo simulations to evaluate between calculated and measured values was determined. Titanium tube contained Tm(NO3)3 powders bombardment at the Tehran Research Reactor (TRR) for a period of 7 days at a flux of 2-3 × 10(13) neutrons/cm2 s. To obtain the radial dose function, g(r), and the anisotropy function, F(r, θ), according to the AAPM TG-43U1 recommendations, 30 cm × 30 cm × 15 cm phantoms of Perspex slabs were used. Brachytherapy dose distributions were simulated with the MCNP5 Monte Carlo (MC) radiation transport code. The MCPLIB04 photon cross-section library was applied using data from ENDF/B-VI. Cell-heating tally, F6 was employed to calculate absorbed dose in two separate runs for both beta and gamma particles. The calculated dose rate constant for the HDR source was found to be 1.113 ± 0.021 cGyU(-1) h(-1). Nominal uncertainty in the measured and calculated radial dose functions, g(r), for the IR-(170)Tm source in Perspex is tabulated is approximately 6% (ranging from 2% to 9%). The anisotropy function, F(r, θ), of the IR-(170)Tm source was measured at radial distances of r = 1.5, 2, 3, 5 cm relative to the seed center, and polar angles θ ranging from 0° to 330° in 30° increments.


Subject(s)
Brachytherapy/methods , Monte Carlo Method , Radioisotopes/therapeutic use , Thermoluminescent Dosimetry/methods , Thulium/therapeutic use , Brachytherapy/standards , Phantoms, Imaging , Radiotherapy Dosage , Reference Standards
2.
Phys Med ; 29(3): 286-94, 2013 May.
Article in English | MEDLINE | ID: mdl-22592132

ABSTRACT

Monte Carlo simulations and TLD dosimetry have been performed to determine the dose distributions along the central axis of the 12 mm COMS eye plaques loaded with IRA1-(103)Pd seeds. Several simulations and measurements have been employed to investigate the effect of Silastic insert and air in front of the eye on dosimetry results along the central axis of the plaque and at some critical ocular structures. Measurements were performed using TLD-GR200A circular chip dosimeters in a PMMA eye phantom. The central axis TLD chips locations were arranged in one central column of eye phantom, in 3 mm intervals. The off-axis TLD chips locations were arranged in three off-axis columns around the central axis column. Version 5 of the MCNP code was also used to evaluate the dose distribution around the plaque. The presence of the Silastic insert results in dose reduction of 14% at 5 mm; also about 7% dose reduction appears at the interface point, due to the air presence and lack of the scattering condition. The overall dosimetric parameters for the COMS eye plaque loaded with new palladium seeds are similar to a commercial widely used seed such as Theragenics200. As the dose calculations under TG-43 assumptions do not consider the effect of the plaque backing and Silastic insert for accurate dosimetry, it's suggested to apply the effect of the eye plaque materials and air on dosimetry results along the central axis of the plaque and at some critical ocular structures.


Subject(s)
Brachytherapy/instrumentation , Choroid Neoplasms/radiotherapy , Eye, Artificial , Palladium/analysis , Radiometry/methods , Brachytherapy/methods , Equipment Design , Equipment Failure Analysis , Humans , Monte Carlo Method , Radiotherapy Dosage , Reproducibility of Results , Sensitivity and Specificity
3.
Phys Med ; 28(1): 13-8, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21251862

ABSTRACT

In this study version 5 of the MCNP photon transport simulation was used to calculate the dosimetric parameters for new palladium brachytherapy source design following AAPM Task Group No. 43U1 report. The internal source components include four resin beads of 0.6 mm diameters with (103)Pd uniformly absorbed inside and one cylindrical copper marker with 1.5 mm length. The resin beads and marker are then encapsulated within 0.8 mm in diameter and 4.5 mm long cylindrical capsule of titanium. The dose rate constant, Λ, line and point-source radial dose function, g(L)(r) and g(P)(r), and the anisotropy function, F(r,θ) of the IR01-(103)Pd seed have been calculated at distances from 0.25 to 5 cm. All the results are in good agreement with previously published thermoluminescence-dosimeter measured values [3] for the source. The dosimetric parameters calculated in this work showed that in dosimetry point of view, the IR01-(103)Pd seed is suitable for use in brachytherapy of prostate cancer.


Subject(s)
Brachytherapy/methods , Monte Carlo Method , Palladium/therapeutic use , Radioisotopes/therapeutic use , Radiotherapy, Computer-Assisted/methods , Anisotropy , Humans , Male , Prostatic Neoplasms/radiotherapy , Radiometry
4.
J Appl Clin Med Phys ; 12(4): 3581, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-22089014

ABSTRACT

This work presents experimental dosimetry results for a new 103Pd brachytherapy seed, in accordance with the AAPM TG-43U1 recommendation that all new low-energy interstitial brachytherapy seeds should undergo one Monte Carlo (MC) and at least one experimental dosimetry characterization. Measurements were performed using TLD-GR200A circular chip dosimeters using standard methods employing thermoluminescent dosimeters in a Perspex phantom. The Monte Carlo N-particle (MCNP) code, version 5 was used to evaluate the dose-rate distributions around this model 103Pd source in water and Perspex phantoms. The consensus value for dose-rate constant of the IR06-103Pd source was found equal to 0.690 cGy·h(-1)·U(-1). The anisotropy function, F(r, θ), and the radial dose function, g(L)(r), of the seed were measured in Perspex phantom and calculated in both Perspex and liquid water phantom. The measured values were also found in good agreement with corresponding MC calculations.


Subject(s)
Brachytherapy/instrumentation , Brachytherapy/methods , Monte Carlo Method , Palladium/therapeutic use , Equipment Design , Phantoms, Imaging , Radioisotopes/therapeutic use , Radiometry , Radiotherapy Dosage , Water/chemistry
5.
Jpn J Radiol ; 29(5): 324-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21717300

ABSTRACT

PURPOSE: For the treatment of some cancerous tumors using brachytherapy, an American Association of Physicists in Medicine (AAPM) Task Group No. 43U1 report recommends that the dosimetric parameters of a new brachytherapy source must be determined in two experimental and Monte Carlo theoretical methods before using each new source clinically. This study presents the results of Monte Carlo calculations of the dosimetric parameters for a Ir2.A85-2 brachytherapy source design. MATERIALS AND METHODS: Version 5 of the (MCNP) Monte Carlo radiation transport code was used to calculate the dosimetry parameters around the source. RESULTS: The Monte Carlo calculated dose rate constant, Λ, of the Ir2.A85-2 source was found to be 1.113 ± 0.033 cGyU(-1)h(-1). Also in this study, the line-source radial dose function, g ( l )(r) and the anisotropy function, F(r,θ), have been calculated at distances from 0.5 to 10 cm. The results of these calculations have been compared with the published data for the same source. CONCLUSION: All the results are in good concordance with previously published data, with a few exceptions in small angles and short distances. The dosimetric parameters calculated in this work can be used as input data in a treatment planning system (TPS) for exact brachytherapy treatment planning or to verify the calculations of the TPS used in brachytherapy.


Subject(s)
Brachytherapy/statistics & numerical data , Iridium Radioisotopes , Models, Biological , Radiometry/statistics & numerical data , Anisotropy , Equipment Design , Monte Carlo Method , Radiotherapy Dosage
6.
Australas Phys Eng Sci Med ; 34(2): 223-31, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21452056

ABSTRACT

Brachytherapy dose distributions are calculated for 15 mm ROPES eye plaque loaded with model Theragenics200 and IR06-(103)Pd seeds. The effects of stainless steel backing and Acrylic insert on dose distribution along the central axis of the eye plaque and at critical ocular structure are investigated. Monte Carlo simulation was carried out with the Version 5 of the MCNP. The dose at critical ocular structure by considering the eye composition was calculated. Results are compared with the calculated data for COMS eye plaque loaded with Theragenics200 palladium-103 seeds and model 6711 iodine-125 seed. The air kerma strength of the IR06-(103)Pd seed to deliver 85 Gy in apex of tumor in water medium was calculated to be 4.10 U/seed. Along the central axis of stainless steel plaque loaded with new (103)Pd seeds in Acrylic insert, the dose reduction relative to water is 6.9% at 5 mm (apex). Removal of the Acrylic insert from the plaque (replacing with water) did not make significantly difference in dose reduction results (~0.2%). The presence of the stainless steel backing results in dose enhancement near the plaque relative to water. Doses at points of interest are higher for ROPES eye plaque when compared to COMS eye plaque. The dosimetric parameters calculated in this work for the new palladium seed, showed that in dosimetry point of view, the IR06-(103)Pd seed is suitable for use in brachytherapy. The effect of Acrylic insert on dose distribution is negligible and the main effect on dose reduction is due to the presence of stainless steel plaque backing.


Subject(s)
Brachytherapy/instrumentation , Brachytherapy/methods , Choroid Neoplasms/radiotherapy , Models, Biological , Palladium/administration & dosage , Radioisotopes/administration & dosage , Radiotherapy Planning, Computer-Assisted/methods , Computer Simulation , Humans , Melanoma/radiotherapy , Monte Carlo Method , Radiotherapy Dosage , Stainless Steel
7.
Med Phys ; 37(6): 2509-15, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20632562

ABSTRACT

PURPOSE: For the treatment of some cancerous tumors using brachytherapy methods and low-energy photon sources, such as 125I and 103Pd, the American Association of Physicists in Medicine Task Group No. 43U1 report recommends that the dosimetric parameters of a new brachytherapy source must be determined in two experimental and Monte Carlo theoretical methods before using each new source clinically. This study presents the results of Monte Carlo calculations of the dosimetric parameters for IR08-103Pd brachytherapy source design. IR08-103Pd seed has been manufactured at the Agricultural, Medical and Industrial Research School. METHODS: Version 5 of the (MCNP) Monte Carlo radiation transport code was used to calculate the dosimetry parameters around the source. Three geometric models of the seed, based on different locations of beads inside the titanium capsule, were simulated. The seed contains five resin beads of 0.6 mm diameter having 103Pd uniformly absorbed in the bead volume, which were contained within a cylindrical titanium capsule having 0.8 mm outside diameter and 4.8 mm length. RESULTS: The Monte Carlo calculated dose rate constant of the IR08-103Pd seed was found to be 0.695 +/- 0.021 cGyU(-1) h(-1). Also in this study, the geometry function G(r, theta), line and point-source radial dose functions gL(r) and gP(r), and the anisotropy function F(r, theta), have been calculated at distances from 0.25 to 7 cm. The results of these calculations have been compared with measured values for an actual IR08-103Pd seed. CONCLUSIONS: There are no statistical significant dosimetric differences among the three seed orientations in this study (i.e., ideal, vertical, and diagonal). However, the observed differences between the calculated and measured values could be explained by the measurement uncertainty and the configuration of the resin beads within the capsule and capsule orientation.


Subject(s)
Brachytherapy/instrumentation , Brachytherapy/methods , Palladium/analysis , Palladium/therapeutic use , Radiometry/methods , Data Interpretation, Statistical , Equipment Failure Analysis , Isotopes/analysis , Isotopes/therapeutic use , Monte Carlo Method , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...