Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Mass Spectrom (Chichester) ; 27(5): 181-190, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34762542

ABSTRACT

The analytical value of peaks arising by a proximity effect in the electron ionization mass spectra of benzanilides has been established by examining the spectra of numerous examples of general structure XC6H4NHCOC6H4Y. Significant [M-X]+ signals are observed only when X = Cl, Br, I or CH3O in the 2-position. The presence of strong [M-X]+ signals, but negligibly weak [M-Y]+ peaks, even when the C-Y bond would be expected to break more readily than the C-X bond, indicates that these diagnostically useful signals do not arise by simple cleavage. Similarly, the presence of an appreciable [M-Cl]+ signal, but no [M-Br]+ signal, in the spectra of representative examples of 4-Br-2ClC6H3NHCOC6H4Y, reveals that loss of a substituent from the 2-position occurs much more rapidly than fission of a weaker bond to a substituent in the 4-position. These trends are interpreted in terms of cyclization of the ionized 2-substituted benzanilide, followed by elimination of the substituent originally in the 2-position, to form a protonated 2-arylbenzoxazole.


Subject(s)
Anilides , Electrons , Mass Spectrometry
2.
Molecules ; 26(16)2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34443665

ABSTRACT

The accelerated formation of 2,3-diphenylquinoxalines in microdroplets generated in a nebulizer has been investigated by competition experiments in which equimolar quantities of 1,2-phenylenediamine, C6H4(NH2)2, and a 4-substituted homologue, XC6H3(NH2)2 [X = F, Cl, Br, CH3, CH3O, CO2CH3, CF3, CN or NO2], or a 4,5-disubstituted homologue, X2C6H2(NH2)2 [X = F, Cl, Br, or CH3], compete to condense with benzil, (C6H5CO)2. Electron-donating substituents (X = CH3 and CH3O) accelerate the reaction; in contrast, electron-attracting substituents (X = F, Cl, Br and particularly CO2CH3, CN, CF3 and NO2) retard it. A structure-reactivity relationship in the form of a Hammett correlation has been found by analyzing the ratio of 2,3-diphenylquinoxaline and the corresponding substituted-2,3-diphenylquinoxaline, giving a ρ value of -0.96, thus confirming that the electron density in the aromatic ring of the phenylenediamine component is reduced in the rate-limiting step in this accelerated condensation. This correlation shows that the phenylenediamine acts as a nucleophile in the reaction.

3.
Dalton Trans ; 49(5): 1700, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31967138

ABSTRACT

Correction for 'Pseudo electron-deficient organometallics: limited reactivity towards electron-donating ligands' by Anaïs Pitto-Barry et al., Dalton Trans., 2017, 46, 15676-15683.

4.
Eur J Mass Spectrom (Chichester) ; 25(6): 457-462, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31547678

ABSTRACT

Competition experiments in which 1,2-phenylenediamine, C6H4(NH2)2, condenses with equimolar quantities of benzil, (C6H5CO)2, and a 3,3'- or 4,4'-disubstituted benzil (XC6H4CO)2 (X = F, Cl, Br, CH3 or CH3O) to form a mixture of 2,3-diphenylquinoxaline and the corresponding 2,3-diarylquinoxaline (Ar = XC6H4) in the microdroplets produced in a nebuliser allow a Hammett relationship with a ρ value of 1.85 to be developed for this accelerated condensation in the nebuliser. This structure reactivity relationship reveals that an appreciable amount of negative charge builds up on the carbon of the carbonyl group of the benzil during the rate-limiting step of the reaction, thus confirming that this process involves nucleophilic addition of the 1,2-phenylenediamine to the benzil. In general, the presence of an electron donating substituent, particularly in the 4 and 4' positions, in the benzil retards the reaction, whereas an electron attracting substituent, especially in the 3 and 3' position, accelerates it.


Subject(s)
Quinoxalines/chemistry , Molecular Structure , Nebulizers and Vaporizers , Phenylenediamines/chemistry , Phenylglyoxal/analogs & derivatives , Phenylglyoxal/chemistry
5.
Eur J Mass Spectrom (Chichester) ; 24(1): 3-11, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29119838

ABSTRACT

Ions corresponding to protonated imines appear in the positive ion electrospray mass spectra of mixtures of the parent aromatic aldehyde and arylamine. The formation of these imine products occurs readily in the electrospray source nebuliser, even without the application of a spray potential. This accelerated formation of C=N bonds in the nebuliser has been extended to encompass the preparation of quinoxalines from a range of substituted phenylenediamines and benzils. The condensation may be induced either under conventional positive ion electrospray conditions (to give the protonated quinoxalines) or when the nebuliser is disconnected from the mass spectrometer (to give the neutral quinoxaline). Ions corresponding to intermediate adducts formed by condensation of the phenylenediamine component with the protonated benzil are observed in many cases when the condensation occurs in the mass spectrometer. This finding supports an interpretation based on nucleophilic addition in droplets generated by the nebuliser.

6.
Dalton Trans ; 46(45): 15676-15683, 2017 11 21.
Article in English | MEDLINE | ID: mdl-28926052

ABSTRACT

Half-sandwich metal complexes are of considerable interest in medicinal, material, and nanomaterial chemistry. The design of libraries of such complexes with particular reactivity and properties is therefore a major quest. Here, we report the unique and peculiar reactivity of eight apparently 16-electron half-sandwich metal (ruthenium, osmium, rhodium, and iridium) complexes based on benzene-1,2-dithiolato and 3,6-dichlorobenzene-1,2-dithiolato chelating ligands. These electron-deficient complexes do not react with electron-donor pyridine derivatives, even with the strong σ-donor 4-dimethylaminopyridine (DMAP) ligand. The Ru, Rh, and Ir complexes accept electrons from the triphenylphosphine ligand (σ-donor, π-acceptor), whilst the Os complexes were found to be the first examples of non-electron-acceptor electron-deficient metal complexes. We rationalised these unique properties by a combination of experimental techniques and DFT/TDFT calculations. The synthetic versatility offered by this family of complexes, the low reactivity at the metal center, and the facile functionalisation of the non-innocent benzene ligands is expected to allow the synthesis of libraries of pseudo electron-deficient half-sandwich complexes with unusual properties for a broad range of applications.

7.
Eur J Mass Spectrom (Chichester) ; 22(4): 165-173, 2016.
Article in English | MEDLINE | ID: mdl-27882881

ABSTRACT

The positive ion electrospray mass spectra of a range of sulphonamides of general structure CH3C6H4SO2NHR1 [R1 = CnH2n+1 (n = 1-7), CnH2n-1 (n = 3, 4), C6H5, C6H5CH2 and C6H5CH(CH3)] and CH3C6H4SO2NR1R2 [R1, R2 = CnH2n+1 (n = 1-8)] are reported and discussed. The protonated sulphonamides derived from saturated primary and secondary aliphatic amines generally fragment to only a limited extent unless energised by collision. Two general fragmentations are observed: firstly, elimination of an alkene, CnH2n, obtained by hydrogen abstraction from one of the CnH2n+1 alkyl groups on nitrogen; secondly, cleavage to form CH3C6H4SO2+. The mechanism by which an alkene is lost has been probed by studying the variation of the intensity of the [M + H - CnH2n]+ signal with the structure of the alkyl substituent(s) on nitrogen and by monitoring the competition between the loss of different alkenes from protonated unsymmetrical sulphonamides in which two different alkyl groups are attached to nitrogen. This fragmentation is favoured by branching of the alkyl group at the carbon atom directly attached to nitrogen, thus suggesting that it involves a mechanism in which the stability of the cation obtained by stretching the bond connecting the nitrogen atom to the alkyl group is critical. This interpretation also explains the competition between alkene elimination and cleavage to form CH3C6H4SO2+ (and, in some cases, cleavage to form C6H5CH2+ or [C6H5CHCH3]+).

8.
Rapid Commun Mass Spectrom ; 28(17): 1948-52, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25088138

ABSTRACT

RATIONALE: When subjected to positive ion electrospray ionisation (ESI+) mass spectrometry (MS), indoles with a 3-alkyl substituent show a propensity to form novel [2M-H](+) 'covalently bound dimers'. This process, which appears to be initiated in the nebuliser of the instrument, is mechanistically interesting, analytically useful and potentially significant in organic synthesis. METHODS: A selection of 2- and 3-substituted indoles have been synthesised and analysed by ESI-MS. The formation of the 'homo' and 'hetero' dimers of these compounds has been investigated using ESI+ mode. The mechanism of formation of the observed 'dimeric' species has been probed by synthesising authentic samples of the dimeric compounds. RESULTS: 'Dimeric' species corresponding to [2M-H](+) have been observed for all 3-substituted indoles studied, but not for indoles substituted in just the 2-position. By infusing equimolar mixtures of labelled and unlabelled indoles through the instrument, the expected approximately statistical mixture of homo- and heterodimeric species has been observed. Further experiments have established that this novel dimerisation occurs in the droplets formed in the nebuliser of the instrument. CONCLUSIONS: It has been shown that 3-substituted indoles form [2M-H](+) dimers in high abundance in the spray obtained from the nebiliser of an ESI+ instrument. The mechanism for the dimerisation does not involve the known 2M dimeric species that is readily formed in the solution-phase chemistry of indoles.


Subject(s)
Indoles/analysis , Indoles/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Dimerization , Nebulizers and Vaporizers
SELECTION OF CITATIONS
SEARCH DETAIL
...