Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Radiother Oncol ; 198: 110380, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38879128

ABSTRACT

BACKGROUND AND PURPOSE: Preclinical research demonstrated that the exposure of microbubbles (intravascular gas microspheres) to focussed ultrasound within the targeted tumour upregulates pro-apoptotic pathways and enhances radiation-induced tumour cell death. This study aimed to assess the safety and efficacy of magnetic resonance (MR)-guided focussed ultrasound-stimulated microbubbles (MRgFUS-MB) for head and neck cancers (HN). MATERIALS AND METHODS: This prospective phase 1 clinical trial included patients with newly diagnosed or recurrent HN cancer (except nasopharynx malignancies) for whom locoregional radiotherapy with radical- or palliative-intent as deemed appropriate. Patients with contraindications for microbubble administration or contrast-enhanced MR were excluded. MR-coupled focussed ultrasound sonicated intravenously administered microbubbles within the MR-guided target volume. Patients receiving 5-10 and 33-35 radiation fractions were planned for 2 and 3 MRgFUS-MB treatments, respectively. Primary endpoint was toxicity per CTCAEv5.0. Secondary endpoint was tumour response at 3 months per RECIST 1.1 criteria. RESULTS: Twelve patients were enrolled between Jun/2020 and Nov/2023, but 1 withdrew consent. Eleven patients were included in safety analysis. Median follow-up was 7 months (range, 0.3-38). Most patients had oropharyngeal cancer (55 %) and received 20-30 Gy/5-10 fractions (63 %). No systemic toxicity or MRgFUS-MB-related adverse events occurred. The most severe acute adverse events were radiation-related grade 3 toxicities in 6 patients (55 %; dermatitis in 3, mucositis in 1, dysphagia in 6). No radiation necrosis or grade 4/5 toxicities were reported. 8 patients were included in the 3-month tumour response assessment: 4 had partial response (50 %), 3 had complete response (37.5 %), and 1 had progressive disease (12.5 %). CONCLUSIONS: MRgFUS-MB treatment was safe and associated with high rates of tumour response at 3 months.

2.
PLoS Med ; 21(5): e1004408, 2024 May.
Article in English | MEDLINE | ID: mdl-38758967

ABSTRACT

BACKGROUND: Preclinical studies have demonstrated that tumour cell death can be enhanced 10- to 40-fold when radiotherapy is combined with focussed ultrasound-stimulated microbubble (FUS-MB) treatment. The acoustic exposure of microbubbles (intravascular gas microspheres) within the target volume causes bubble cavitation, which induces perturbation of tumour vasculature and activates endothelial cell apoptotic pathways responsible for the ablative effect of stereotactic body radiotherapy. Subsequent irradiation of a microbubble-sensitised tumour causes rapid increased tumour death. The study here presents the mature safety and efficacy outcomes of magnetic resonance (MR)-guided FUS-MB (MRgFUS-MB) treatment, a radioenhancement therapy for breast cancer. METHODS AND FINDINGS: This prospective, single-center, single-arm Phase 1 clinical trial included patients with stages I-IV breast cancer with in situ tumours for whom breast or chest wall radiotherapy was deemed adequate by a multidisciplinary team (clinicaltrials.gov identifier: NCT04431674). Patients were excluded if they had contraindications for contrast-enhanced MR or microbubble administration. Patients underwent 2 to 3 MRgFUS-MB treatments throughout radiotherapy. An MR-coupled focussed ultrasound device operating at 800 kHz and 570 kPa peak negative pressure was used to sonicate intravenously administrated microbubbles within the MR-guided target volume. The primary outcome was acute toxicity per Common Terminology Criteria for Adverse Events (CTCAE) v5.0. Secondary outcomes were tumour response at 3 months and local control (LC). A total of 21 female patients presenting with 23 primary breast tumours were enrolled and allocated to intervention between August/2020 and November/2022. Three patients subsequently withdrew consent and, therefore, 18 patients with 20 tumours were included in the safety and LC analyses. Two patients died due to progressive metastatic disease before 3 months following treatment completion and were excluded from the tumour response analysis. The prescribed radiation doses were 20 Gy/5 fractions (40%, n = 8/20), 30 to 35 Gy/5 fractions (35%, n = 7/20), 30 to 40 Gy/10 fractions (15%, n = 3/20), and 66 Gy/33 fractions (10%, n = 2/20). The median follow-up was 9 months (range, 0.3 to 29). Radiation dermatitis was the most common acute toxicity (Grade 1 in 16/20, Grade 2 in 1/20, and Grade 3 in 2/20). One patient developed grade 1 allergic reaction possibly related to microbubbles administration. At 3 months, 18 tumours were evaluated for response: 9 exhibited complete response (50%, n = 9/18), 6 partial response (33%, n = 6/18), 2 stable disease (11%, n = 2/18), and 1 progressive disease (6%, n = 1/18). Further follow-up of responses indicated that the 6-, 12-, and 24-month LC rates were 94% (95% confidence interval [CI] [84%, 100%]), 88% (95% CI [75%, 100%]), and 76% (95% CI [54%, 100%]), respectively. The study's limitations include variable tumour sizes and dose fractionation regimens and the anticipated small sample size typical for a Phase 1 clinical trial. CONCLUSIONS: MRgFUS-MB is an innovative radioenhancement therapy associated with a safe profile, potentially promising responses, and durable LC. These results warrant validation in Phase 2 clinical trials. TRIAL REGISTRATION: clinicaltrials.gov, identifier NCT04431674.


Subject(s)
Breast Neoplasms , Microbubbles , Humans , Breast Neoplasms/radiotherapy , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Female , Microbubbles/therapeutic use , Middle Aged , Aged , Prospective Studies , Adult , Treatment Outcome , Magnetic Resonance Imaging , Aged, 80 and over
3.
Radiol Imaging Cancer ; 6(2): e230029, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38391311

ABSTRACT

Purpose To investigate the role of quantitative US (QUS) radiomics data obtained after the 1st week of radiation therapy (RT) in predicting treatment response in individuals with head and neck squamous cell carcinoma (HNSCC). Materials and Methods This prospective study included 55 participants (21 with complete response [median age, 65 years {IQR: 47-80 years}, 20 male, one female; and 34 with incomplete response [median age, 59 years {IQR: 39-79 years}, 33 male, one female) with bulky node-positive HNSCC treated with curative-intent RT from January 2015 to October 2019. All participants received 70 Gy of radiation in 33-35 fractions over 6-7 weeks. US radiofrequency data from metastatic lymph nodes were acquired prior to and after 1 week of RT. QUS analysis resulted in five spectral maps from which mean values were extracted. We applied a gray-level co-occurrence matrix technique for textural analysis, leading to 20 QUS texture and 80 texture-derivative parameters. The response 3 months after RT was used as the end point. Model building and evaluation utilized nested leave-one-out cross-validation. Results Five delta (Δ) parameters had statistically significant differences (P < .05). The support vector machines classifier achieved a sensitivity of 71% (15 of 21), a specificity of 76% (26 of 34), a balanced accuracy of 74%, and an area under the receiver operating characteristic curve of 0.77 on the test set. For all the classifiers, the performance improved after the 1st week of treatment. Conclusion A QUS Δ-radiomics model using data obtained after the 1st week of RT from individuals with HNSCC predicted response 3 months after treatment completion with reasonable accuracy. Keywords: Computer-Aided Diagnosis (CAD), Ultrasound, Radiation Therapy/Oncology, Head/Neck, Radiomics, Quantitative US, Radiotherapy, Head and Neck Squamous Cell Carcinoma, Machine Learning Clinicaltrials.gov registration no. NCT03908684 Supplemental material is available for this article. © RSNA, 2024.


Subject(s)
Head and Neck Neoplasms , Aged , Female , Humans , Male , Middle Aged , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Neck , Prospective Studies , Radiomics , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging , Squamous Cell Carcinoma of Head and Neck/radiotherapy
4.
Technol Cancer Res Treat ; 22: 15330338231200993, 2023.
Article in English | MEDLINE | ID: mdl-37750232

ABSTRACT

Objectives: Prior study has demonstrated the implementation of quantitative ultrasound (QUS) for determining the therapy response in breast tumour patients. Several QUS parameters quantified from the tumour region showed a significant correlation with the patient's clinical and pathological response. In this study, we aim to identify if there exists such a link between QUS parameters and changes in tumour morphology due to combined ultrasound-stimulated microbubbles (USMB) and hyperthermia (HT) using the breast xenograft model (MDA-MB-231). Method: Tumours grown in the hind leg of severe combined immuno-deficient mice were treated with permutations of USMB and HT. Ultrasound radiofrequency data were collected using a 25 MHz array transducer, from breast tumour-bearing mice prior and post-24-hour treatment. Result: Our result demonstrated an increase in the QUS parameters the mid-band fit and spectral 0-MHz intercept with an increase in HT duration combined with USMB which was found to be reflective of tissue structural changes and cell death detected using haematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labelling stain. A significant decrease in QUS spectral parameters was observed at an HT duration of 60 minutes, which is possibly due to loss of nuclei by the majority of cells as confirmed using histology analysis. Morphological alterations within the tumour might have contributed to the decrease in backscatter parameters. Conclusion: The work here uses the QUS technique to assess the efficacy of cancer therapy and demonstrates that the changes in ultrasound backscatters mirrored changes in tissue morphology.


Subject(s)
Breast Neoplasms , Hyperthermia, Induced , Humans , Animals , Mice , Female , Microbubbles , Ultrasonography/methods , Cell Death , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/therapy
5.
Sci Rep ; 13(1): 13566, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37604988

ABSTRACT

Preclinical studies have demonstrated focused ultrasound (FUS) stimulated microbubble (MB) rupture leads to the activation of acid sphingomyelinase-ceramide pathway in the endothelial cells. When radiotherapy (RT) is delivered concurrently with FUS-MB, apoptotic pathway leads to increased cell death resulting in potent radiosensitization. Here we report the first human trial of using magnetic resonance imaging (MRI) guided FUS-MB treatment in the treatment of breast malignancies. In the phase 1 prospective interventional study, patients with breast cancer were treated with fractionated RT (5 or 10 fractions) to the disease involving breast or chest wall. FUS-MB treatment was delivered before 1st and 5th fractions of RT (within 1 h). Eight patients with 9 tumours were treated. All 7 evaluable patients with at least 3 months follow-up treated for 8 tumours had a complete response in the treated site. The maximum acute toxicity observed was grade 2 dermatitis in 1 site, and grade 1 in 8 treated sites, at one month post RT, which recovered at 3 months. No RT-related late effect or FUS-MB related toxicity was noted. This study demonstrated safety of combined FUS-MB and RT treatment. Promising response rates suggest potential strong radiosensitization effects of the investigational modality.Trial registration: clinicaltrials.gov, identifier NCT04431674.


Subject(s)
Breast Neoplasms , Microbubbles , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/radiotherapy , Endothelial Cells , Prospective Studies , Magnetic Resonance Imaging
6.
Oncotarget ; 12(25): 2437-2448, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34917262

ABSTRACT

BACKGROUND: The purpose of the study was to investigate the role of pre-treatment quantitative ultrasound (QUS)-radiomics in predicting recurrence for patients with locally advanced breast cancer (LABC). MATERIALS AND METHODS: A prospective study was conducted in patients with LABC (n = 83). Primary tumours were scanned using a clinical ultrasound device before starting treatment. Ninety-five imaging features were extracted-spectral features, texture, and texture-derivatives. Patients were determined to have recurrence or no recurrence based on clinical outcomes. Machine learning classifiers with k-nearest neighbour (KNN) and support vector machine (SVM) were evaluated for model development using a maximum of 3 features and leave-one-out cross-validation. RESULTS: With a median follow up of 69 months (range 7-118 months), 28 patients had disease recurrence (local or distant). The best classification results were obtained using an SVM classifier with a sensitivity, specificity, accuracy and area under curve of 71%, 87%, 82%, and 0.76, respectively. Using the SVM model for the predicted non-recurrence and recurrence groups, the estimated 5-year recurrence-free survival was 83% and 54% (p = 0.003), and the predicted 5-year overall survival was 85% and 74% (p = 0.083), respectively. CONCLUSIONS: A QUS-radiomics model using higher-order texture derivatives can identify patients with LABC at higher risk of disease recurrence before starting treatment.

7.
Clin Transl Radiat Oncol ; 28: 62-70, 2021 May.
Article in English | MEDLINE | ID: mdl-33778174

ABSTRACT

PURPOSE: This study investigated the use of quantitative ultrasound (QUS) obtained during radical radiotherapy (RT) as a radiomics biomarker for predicting recurrence in patients with node-positive head-neck squamous cell carcinoma (HNSCC). METHODS: Fifty-one patients with HNSCC were treated with RT (70 Gy/33 fractions) (±concurrent chemotherapy) were included. QUS Data acquisition involved scanning an index neck node with a clinical ultrasound device. Radiofrequency data were collected before starting RT, and after weeks 1, and 4. From this data, 31 spectral and related-texture features were determined for each time and delta (difference) features were computed. Patients were categorized into two groups based on clinical outcomes (recurrence or non-recurrence). Three machine learning classifiers were used for the development of a radiomics model. Features were selected using a forward sequential selection method and validated using leave-one-out cross-validation. RESULTS: The median follow up for the entire group was 38 months (range 7-64 months). The disease sites involved neck masses in patients with oropharynx (39), larynx (5), carcinoma unknown primary (5), and hypopharynx carcinoma (2). Concurrent chemotherapy and cetuximab were used in 41 and 1 patient(s), respectively. Recurrence was seen in 17 patients. At week 1 of RT, the support vector machine classifier resulted in the best performance, with accuracy and area under the curve (AUC) of 80% and 0.75, respectively. The accuracy and AUC improved to 82% and 0.81, respectively, at week 4 of treatment. CONCLUSION: QUS Delta-radiomics can predict higher risk of recurrence with reasonable accuracy in HNSCC.Clinical trial registration: clinicaltrials.gov.in identifier NCT03908684.

8.
Sci Rep ; 11(1): 6117, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33731738

ABSTRACT

To investigate the role of quantitative ultrasound (QUS) radiomics to predict treatment response in patients with head and neck squamous cell carcinoma (HNSCC) treated with radical radiotherapy (RT). Five spectral parameters, 20 texture, and 80 texture-derivative features were extracted from the index lymph node before treatment. Response was assessed initially at 3 months with complete responders labelled as early responders (ER). Patients with residual disease were followed to classify them as either late responders (LR) or patients with persistent/progressive disease (PD). Machine learning classifiers with leave-one-out cross-validation was used for the development of a binary response-prediction radiomics model. A total of 59 patients were included in the study (22 ER, 29 LR, and 8 PD). A support vector machine (SVM) classifier led to the best performance with accuracy and area under curve (AUC) of 92% and 0.91, responsively to define the response at 3 months (ER vs. LR/PD). The 2-year recurrence-free survival for predicted-ER, LR, PD using an SVM-model was 91%, 78%, and 27%, respectively (p < 0.01). Pretreatment QUS-radiomics using texture derivatives in HNSCC can predict the response to RT with an accuracy of more than 90% with a strong influence on the survival.Clinical trial registration: clinicaltrials.gov.in identifier NCT03908684.


Subject(s)
Head and Neck Neoplasms , Neoplasm Recurrence, Local , Radiation Tolerance , Squamous Cell Carcinoma of Head and Neck , Adult , Aged , Aged, 80 and over , Disease-Free Survival , Female , Head and Neck Neoplasms/mortality , Head and Neck Neoplasms/radiotherapy , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/mortality , Neoplasm Recurrence, Local/radiotherapy , Squamous Cell Carcinoma of Head and Neck/mortality , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Survival Rate
9.
Cancer Med ; 10(8): 2579-2589, 2021 04.
Article in English | MEDLINE | ID: mdl-33314716

ABSTRACT

This prospective study was conducted to investigate the role of quantitative ultrasound (QUS) radiomics in predicting recurrence for patients with node-positive head-neck squamous cell carcinoma (HNSCC) treated with radical radiotherapy (RT). The most prominent cervical lymph node (LN) was scanned with a clinical ultrasound device having central frequency of 6.5 MHz. Ultrasound radiofrequency data were processed to obtain 7 QUS parameters. Color-coded parametric maps were generated based on individual QUS spectral features corresponding to each of the smaller units. A total of 31 (7 primary QUS and 24 texture) features were obtained before treatment. All patients were treated with radical RT and followed according to standard institutional practice. Recurrence (local, regional, or distant) served as an endpoint. Three different machine learning classifiers with a set of maximally three features were used for model development and tested with leave-one-out cross-validation for nonrecurrence and recurrence groups. Fifty-one patients were included, with a median follow up of 38 months (range 7-64 months). Recurrence was observed in 17 patients. The best results were obtained using a k-nearest neighbor (KNN) classifier with a sensitivity, specificity, accuracy, and an area under curve of 76%, 71%, 75%, and 0.74, respectively. All the three features selected for the KNN model were texture features. The KNN-model-predicted 3-year recurrence-free survival was 81% and 40% in the predicted no-recurrence and predicted-recurrence groups, respectively. (p = 0.001). The pilot study demonstrates pretreatment QUS-radiomics can predict the recurrence group with an accuracy of 75% in patients with node-positive HNSCC. Clinical trial registration: clinicaltrials.gov.in identifier NCT03908684.


Subject(s)
Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Ultrasonography/methods , Adult , Aged , Aged, 80 and over , Female , Head and Neck Neoplasms/pathology , Humans , Machine Learning , Male , Middle Aged , Neoplasm Recurrence, Local , Prospective Studies , ROC Curve , Squamous Cell Carcinoma of Head and Neck/pathology , Treatment Outcome
10.
Oncotarget ; 11(42): 3782-3792, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33144919

ABSTRACT

BACKGROUND: To investigate quantitative ultrasound (QUS) based higher-order texture derivatives in predicting the response to neoadjuvant chemotherapy (NAC) in patients with locally advanced breast cancer (LABC). MATERIALS AND METHODS: 100 Patients with LABC were scanned before starting NAC. Five QUS parametric image-types were generated from radio-frequency data over the tumor volume. From each QUS parametric-image, 4 grey level co-occurrence matrix-based texture images were derived (20 QUS-Tex1), which were further processed to create texture derivatives (80 QUS-Tex1-Tex2). Patients were classified into responders and non-responders based on clinical/pathological responses to treatment. Three machine learning algorithms based on linear discriminant (FLD), k-nearest-neighbors (KNN), and support vector machine (SVM) were used for developing radiomic models of response prediction. RESULTS: A KNN-model provided the best results with sensitivity, specificity, accuracy, and area under curve (AUC) of 87%, 81%, 82%, and 0.86, respectively. The most helpful features in separating the two response groups were QUS-Tex1-Tex2 features. The 5-year recurrence-free survival (RFS) calculated for KNN predicted responders and non-responders using QUS-Tex1-Tex2 model were comparable to RFS for the actual response groups. CONCLUSIONS: We report the first study demonstrating QUS texture-derivative methods in predicting NAC responses in LABC, which leads to better results compared to using texture features alone.

SELECTION OF CITATIONS
SEARCH DETAIL
...